Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Self-tuning fuzzy-PI-based current control algorithm for doubly fed induction generator

This study presents a fuzzy-proportional–integral (PI) controller having self-tuning property for current control of doubly fed induction generator (DFIG). Two fuzzy-PI-based controllers: first one is used for controlling rotor current of DFIG, whereas the other come up with optimal output-scaling factor for the former are employed to carry out the algorithm. The proposed controller is robust with different operating conditions and parameter changes because of having adaptive feature. The performance of the control algorithm both transient and steady-state conditions are tested with several experiments performed various operating points. The results achieved from both simulation and experimental tests verify that the implemented method is superior to steady-state and transient response at all operations as exhibits robustness to wind speed and parameter variations.

References

    1. 1)
      • 10. Zhu, C., Zeng, Z., Yuan, Q., et al: ‘Improved voltage vector control for a stand-alone DFIG system based on predictive current regulation algorithm’. 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, China, October 2014, pp. 30163023.
    2. 2)
      • 25. Jazaeri, M., Samadi, A.A.: ‘Self-tuning fuzzy PI-based controller of DFIG wind turbine for transient conditions enhancement’, Int. Trans. Electr. Energy Syst., 2015, 25, (11), pp. 26572673.
    3. 3)
      • 24. Hamane, B., Benghanem, M., Bouzid, A.M., et al: ‘Control for variable speed wind turbine driving a doubly Fed induction generator using fuzzy-PI control’, Energy Procedia, 2012, 18, pp. 476485.
    4. 4)
      • 31. Therese, P.S., Nair, N.K.: ‘A unique novel approach for design and analysis of a robust decentralized self-tuning fuzzy PI controller for a multi input multi output process’, Am. J. Appl. Sci., 2012, 9, (3), pp. 331336.
    5. 5)
      • 26. Yan, K., Wang, X., Huang, L.: ‘Fuzzy logic control for optimal rotating speed tracking of doubly fed induction generator’. 27th Chinese Control and Decision Conf., Qingdao, China, May 2015, pp. 19261930.
    6. 6)
      • 12. Xu, L., Zhi, D., Liao, L.Y.: ‘Direct power control of grid connected voltage source converters’. Proc. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, June 2007, pp. 16.
    7. 7)
      • 28. Li, S., Challoo, R., Nemmers, M.J.: ‘Comparative study of DFIG power control using stator-voltage and stator-flux oriented frames’. 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, 2009, pp. 18.
    8. 8)
      • 32. Hameed, S.: ‘Chapter 6, self-tuning fuzzy PI controller (STFPIC)’, Dadios, E.P. (ED.): ‘Fuzzy logic – tool for getting accurate solutions’, doi: 10.5772/59810, published: 2 September 2015, ISBN 978–953–51–2153–4.
    9. 9)
      • 13. Molinowski, M., Jasinski, M., Kazmierkowski, M.P.: ‘Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 447454.
    10. 10)
      • 14. Hu, J., Yuan, X.: ‘VSC-based direct torque and reactive power control of doubly fed induction generator’, Renew. Energy, 2012, 40, (1), pp. 1323.
    11. 11)
      • 2. Chen, Z., Guerrero, J., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    12. 12)
      • 9. Bayhan, S., Abu-Rub, H.: ‘Model predictive sensorless control of standalone doubly fed induction generator’. 40th Annual Conf. IEEE Industrial Electronics Society (IECON 2014), Dallas, TX, USA, October 2014, pp. 21662172.
    13. 13)
      • 19. Mehdi, A., Reama, A., Medouce, H.E., et al: ‘Direct active and reactive power control of DFIG based wind energy conversion system’. Int. Symp. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, June 2014, pp. 11281133.
    14. 14)
      • 30. Pal1, A.K., Mud, R.K.: ‘Speed control of DC motor using relay feedback tuned fuzzy PI and self-tuned fuzzy PI controller’. Control Theory and Informatics, 2012, vol2, no. 1.
    15. 15)
      • 4. Polinder, H., Van der Pijl, F., De Vilder, G.-J., et al: ‘Comparison of direct-drive and geared generator concepts for wind turbines’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 725733.
    16. 16)
      • 7. Mohammadi, J., Vaez-ZAdeh, S., Afsharnia, S., et al: ‘A combined vector and direct power control for DFIG-based wind turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 767775.
    17. 17)
      • 18. Kazemi, M.V., Yazdankhah, A.S., Kojabadi, H.M.: ‘Direct power control of DFIG based on discrete space vector modulation’, Renew. Energy, 2010, 35, (5), pp. 10331042.
    18. 18)
      • 8. Nian, H., Song, Y.: ‘Direct power control of doubly Fed induction generator under distorted grid voltage’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 894905.
    19. 19)
      • 6. Datta, S., Mishra, J.P., Roy, A.K.: ‘Active and reactive power control of a grid connected speed sensorless DFIG based wind energy conversion system’. Int. Conf. Energy, Power and Environment: towards Sustainable Growth (ICEPE), Shillong, India, June 2015, pp. 16.
    20. 20)
      • 27. Jabr, H.M., Lu, D., Kar, N.C.: ‘Design and implementation of neuro-Fuzzy vector control for wind-Driven doubly-fed induction generator’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 404413.
    21. 21)
      • 29. Leonardo, P., Leena, Y., Kauko, L.: ‘Development of a fuzzy logic controller for a rotary dryer with self-tuning of scaling factor’. University of Oulu Control Engineering Laboratory Report A No. 17, June 2001.
    22. 22)
      • 5. Tremblay, E., Atayde, S., Chandra, A.: ‘Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 288299.
    23. 23)
      • 23. Krishnama Raju, S., Pillai, G.N.: ‘Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators’, Renew. Energy, 2016, 88, pp. 4050.
    24. 24)
      • 3. Mohammadpour, H., Ghassem Zadeh, S., Tohidi, S.: ‘Symmetrical and asymmetrical low-voltage ride through of doubly-fed induction generator wind turbines using gate controlled series capacitor’, IET Renew. Power Gener., 2015, 9, (7), pp. 840846.
    25. 25)
      • 1. ‘Global Wind Energy Council (GWEC): Global wind statistics 2015’. Available at http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR_corrected.pdf, accessed 03 August 2016.
    26. 26)
      • 17. Nian, H., Cheng, P., Zhu, Z.Q.: ‘Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 29052918.
    27. 27)
      • 16. Mondal, S., Kastha, D.: ‘Improved direct torque and reactive power control of a matrix-converter-fed grid-connected doubly fed induction generator’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75907598.
    28. 28)
      • 20. Zhi, D., Xu, L.: ‘Direct power control of DFIG with constant switching frequency and improved transient performance’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 110118.
    29. 29)
      • 11. Xu, H., Wei, S., Liao, Z., et al: ‘Dynamic modeling and resonant control of doubly fed induction generators during generalized grid voltage distortions’. Eighth Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, May 2016, pp. 35263530.
    30. 30)
      • 15. Zhang, Y., Hu, J., Zhu, J.: ‘Three-vectors-based predictive direct power control of the doubly fed induction generator for wind energy applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34853500.
    31. 31)
      • 22. Belmokhtar, K., Doumbia, M.L., Agbossou, K.: ‘Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)’, Energy, 2014, 76, pp. 679693.
    32. 32)
      • 21. Bayhan, S., Abu-Rub, H., Ellabban, O.: ‘Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid’, IET Renew. Power Gener., 2016, 10, (4), pp. 514521.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0700
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0700
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address