Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Three-phase battery storage system with transformerless cascaded multilevel inverter for distribution grid applications

A distributed generator (DG) based on renewable energy is a promising technology for the future of the electrical sector. DGs may benefit utility companies and customers in a variety of perspectives. However, DGs suffer from intermittent behaviour. Storage systems appear as an attractive solution to support the continuous operation of DGs. The technology within the storage also plays an important role, since DGs and storage are connected in medium-voltage grids. The use of batteries and the DC/AC converter in its conventional structure presents drawbacks in such grids. In this context, this study presents a three-phase transformerless battery storage system (BSS) based on a cascaded H-bridge inverter applied to a medium-voltage grid. The BSS is composed of eight equal series connected H-bridge converters, without bulk transformers, for connection to a distribution grid. Each converter contains 75, 12V/600Ah lead-acid batteries. The converters are controlled through pulse-width modulation at 600Hz. The BSS is able to keep working even with a failure of one of its converters. Reactive energy compensation not compensated by an existent passive filter is also performed. A case study with simulated and experimental results obtained through a hardware-in-the-loop system is presented showing the efficacy of the proposed BSS.

References

    1. 1)
      • 31. Salameh, Z.M., Casacca, M.A., Lynch, W.A.: ‘A mathematical model for lead-acid batteries’, IEEE Trans. Energy Convers., 1992, 7, (1), pp. 9398.
    2. 2)
      • 23. Maharjan, L., Inoue, S., Akagi, H.: ‘A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration’, IEEE Trans. Ind. Appl., 2008, 44, (5), pp. 16211630.
    3. 3)
      • 18. Liang, X., He, J.: ‘Load model for medium voltage cascaded H-bridge multi-level inverter drive systems’, IEEE Power Energy Technol. Syst. J., 2016, 3, (1), pp. 1323.
    4. 4)
      • 16. Janik, D., Kosan, T., Blahnik, V., et al: ‘Complete solution of 4-level flying capacitor converter for medium-voltage drives with active voltage balancing control with phase-disposition PWM’. 16th European Conf. on Power Electronics and Applications (EPE'14-ECCE Europe), 2014, 2014, pp. 18.
    5. 5)
      • 25. Simões, M.G., Busarello, T.D.C., Bubshait, A.S., et al: ‘Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory’, Int. J. Control, 2016, 89, (4), pp. 850870.
    6. 6)
      • 2. Nguyen, T.D., Tseng, K.J., Zhang, S., et al: ‘A novel axial flux permanent-magnet machine for flywheel energy storage system: design and analysis’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 37843794.
    7. 7)
      • 22. Jiang, W., Huang, L., Zhang, L., et al: ‘Control of active power exchange with auxiliary power loop in single-phase cascaded multilevel converter based energy storage system’, IEEE Trans. Power Electron., 2016, PP, (99), pp. 11.
    8. 8)
      • 12. Krishnamoorthy, H.S., Rana, D., Garg, P., et al: ‘Wind turbine generator–battery energy storage utility interface converter topology with medium-frequency transformer link’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 41464155.
    9. 9)
      • 3. Deane, J.P., McKeogh, E.J., Gallachoir, B.P.O.: ‘Derivation of intertemporal targets for large pumped hydro energy storage with stochastic optimization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21472155.
    10. 10)
      • 14. Akagi, H., Hatada, T.: ‘Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active filter’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 571579.
    11. 11)
      • 1. Shahan, Z.: ‘80% clean, renewable energy by 2050: more than possible, but need more political will’ (Scientific American., 2012).
    12. 12)
      • 9. Li, B., Duan, Z., Wang, X., et al: ‘Loss-of-excitation analysis and protection for pumped-storage machines during starting’, IET Renew. Power Gener., 2016, 10, (1), pp. 7178.
    13. 13)
      • 26. IEEE recommended practices and requirements for harmonic control in electrical power systems’, IEEE Std 519-1992, 1993, pp. 1112.
    14. 14)
      • 8. Cresta, M., Gatta, F.M., Geri, A., et al: ‘Optimal operation of a low-voltage distribution network with renewable distributed generation by NaS battery and demand response strategy: a case study in a trial site’, IET Renew. Power Gener., 2015, 9, (6), pp. 549556.
    15. 15)
      • 28. Busarello, T.D.C., Pomilio, J.A.: ‘Bidirectional multilevel shunt compensator with simultaneous functionalities based on the conservative power theory for battery-based storages’, Transm. Distrib. IET Gener., 2015, 9, (12), pp. 13611368.
    16. 16)
      • 24. Vasiladiotis, M., Rufer, A.: ‘Analysis and control of modular multilevel converters with integrated battery energy storage’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 163175.
    17. 17)
      • 19. Mateo, C., Reneses, J., Rodriguez-Calvo, A., et al: ‘Cost–benefit analysis of battery storage in medium-voltage distribution networks’, Transm. Distrib. IET Gener., 2016, 10, (3), pp. 815821.
    18. 18)
      • 6. Pickard, W.F.: ‘The history, present state, and future prospects of underground pumped hydro for massive energy storage’, Proc. IEEE, 2012, 100, (2), pp. 473483.
    19. 19)
      • 20. Kawakami, N., Ota, S., Kon, H., et al: ‘Development of a 500-kW modular multilevel cascade converter for battery energy storage systems’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 39023910.
    20. 20)
      • 5. Ristic, M., Gryska, Y., McGinley, J.V.M., et al: ‘Supercapacitor energy storage for magnetic resonance imaging systems’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 42554264.
    21. 21)
      • 13. Bloh, J.V., Doncker, R.W.D.: ‘Design rules for diode-clamped multilevel inverters used in medium-voltage applications’. VIII IEEE Int. Power Electronics Congress, 2002. Technical Proc. CIEP 2002, 2002, pp. 165170.
    22. 22)
      • 7. Du, P., Lu, N.: ‘Energy storage for smart grids: planning and operation for renewable and variable energy resources (VERs)’ (Academic Press, 2014).
    23. 23)
      • 4. Le, H.T., Santoso, S.: ‘Operating compressed-air energy storage as dynamic reactive compensator for stabilising wind farms under grid fault conditions’, IET Renew. Power Gener., 2013, 7, (6), pp. 717726.
    24. 24)
      • 30. Achaibou, N., Haddadi, M., Malek, A.: ‘Modeling of lead acid batteries in PV systems’, Energy Procedia, 2012, 18, pp. 538544.
    25. 25)
      • 32. Chakraborty, S., Simoes, M.G., Kramer, W.E.: ‘Power electronics for renewable and distributed energy systems: a sourcebook of topologies, control and integration’ (Springer Science & Business Media, 2013).
    26. 26)
      • 15. Tian, K., Wu, B., Narimani, M., et al: ‘A capacitor voltage-balancing method for nested neutral point clamped (NNPC) inverter’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 25752583.
    27. 27)
      • 10. Abdel-Khalik, A.S., Elserougi, A.A., Massoud, A.M., et al: ‘Fault current contribution of medium voltage inverter and doubly-fed induction-machine-based flywheel energy storage system’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 5867.
    28. 28)
      • 29. Pavlov, D.: ‘Lead-acid batteries: science and technology’ (Elsevier, 2015).
    29. 29)
      • 21. Vasiladiotis, M., Rufer, A.: ‘Balancing control actions for cascaded H-bridge converters with integrated battery energy storage’. 15th European Conf. on Power Electronics and Applications (EPE), 2013, 2013, pp. 110.
    30. 30)
      • 17. Abolhassani, M.: ‘Modular multipulse rectifier transformers in symmetrical cascaded H-bridge medium voltage drives’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 698705.
    31. 31)
      • 11. Xu, G., Xu, L., Morrow, J.: ‘Power oscillation damping using wind turbines with energy storage systems’, IET Renew. Power Gener., 2013, 7, (5), pp. 449457.
    32. 32)
      • 27. Tenti, P., Paredes, H.K.M., Mattavelli, P.: ‘Conservative power theory, a framework to approach control and accountability issues in smart microgrids’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 664673.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0629
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address