http://iet.metastore.ingenta.com
1887

Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water

Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel small-scale electromagnetic energy harvester is designed and optimised, which aims at addressing the limitations of existing approaches in output power scavenged from low-velocity flowing water. Instead of conventional cantilever beams, an asymmetric arc-shaped elastic beam is implemented to disrupt flow, leading to its oscillation in the induced unsteady flow field. An electromagnetic transducer is utilised to convert kinetic energy into electrical energy. Furthermore, the effects of the structure asymmetry and curvature on the electrical outputs are investigated to optimise the scavenging energy capability. A prototype with the volume of 152.4 cm3 is fabricated and tested. A maximum open-circuit voltage of 1440 mV is obtained at 0.409 m/s, and the harvester generates an output power of 0.503 mW when it is connected to an external load of 110 Ω. The small-scale harvester shows great potential for applying in wireless sensor networks.

References

    1. 1)
      • A. Dewan , S.U. Ay , M.N. Karim .
        1. Dewan, A., Ay, S.U., Karim, M.N., et al: ‘Alternative power sources for remote sensors: a review’, J. Power Sources, 2014, 245, pp. 129143.
        . J. Power Sources , 129 - 143
    2. 2)
      • J. Yang , Q. Yu , J. Zhao .
        2. Yang, J., Yu, Q., Zhao, J., et al: ‘Design and optimization of a bi-axial vibration-driven electromagnetic generator’, J. Appl. Phys., 2014, 116, (11), p. 114506.
        . J. Appl. Phys. , 11 , 114506
    3. 3)
      • A. Khelifa , K. Touafek , H.B. Moussa .
        3. Khelifa, A., Touafek, K., Moussa, H.B.: ‘Approach for the modelling of hybrid photovoltaic–thermal solar collector’, IET Renew. Power Gener., 2015, 9, (3), pp. 207217.
        . IET Renew. Power Gener. , 3 , 207 - 217
    4. 4)
      • S.J.G. Cooper , M.C. McManus , D. Pudjianto .
        4. Cooper, S.J.G., McManus, M.C., Pudjianto, D., et al: ‘Detailed simulation of electrical demands due to nationwide adoption of heat pumps, taking account of renewable generation and mitigation’, IET Renew. Power Gener., 2016, 10, (3), pp. 380387.
        . IET Renew. Power Gener. , 3 , 380 - 387
    5. 5)
      • Y. Qiu , W. Zhang , D. Infield .
        5. Qiu, Y., Zhang, W., Infield, D., et al: ‘Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data’, IET Renew. Power Gener., 2016, 10, (5), pp. 661668.
        . IET Renew. Power Gener. , 5 , 661 - 668
    6. 6)
      • X. Yu , X. Han , Z. Zhao .
        6. Yu, X., Han, X., Zhao, Z., et al: ‘Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: a highly efficient photoelectrocatalytic device entirely based on renewable energy’, Nano Energy, 2015, 11, pp. 1927.
        . Nano Energy , 19 - 27
    7. 7)
      • J. Chen , J. Yang , H.Y. Guo .
        7. Chen, J., Yang, J., Guo, H.Y., et al: ‘Automatic mode transition enabled robust triboelectric nanogenerators’, ACS Nano, 2015, 9, (12), pp. 1233412343.
        . ACS Nano , 12 , 12334 - 12343
    8. 8)
      • G. Cheng , Z.-H. Lin , Z.-L. Du .
        8. Cheng, G., Lin, Z.-H., Du, Z.-L., et al: ‘Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator’, ACS Nano, 2014, 8, (2), pp. 19321939.
        . ACS Nano , 2 , 1932 - 1939
    9. 9)
      • J. Chen , J. Yang , Z. Li .
        9. Chen, J., Yang, J., Li, Z., et al: ‘Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy’, ACS Nano, 2015, 9, (3), pp. 33243331.
        . ACS Nano , 3 , 3324 - 3331
    10. 10)
      • J. Yang , J. Chen , Y. Yang .
        10. Yang, J., Chen, J., Yang, Y., et al: ‘Broadband vibrational energy harvesting based on a triboelectric nanogenerator’, Adv. Energy Mater., 2014, 4, (6), p. 1301322.
        . Adv. Energy Mater. , 6 , 1301322
    11. 11)
      • J. Yang , J. Chen , Y. Su .
        11. Yang, J., Chen, J., Su, Y., et al: ‘Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition’, Adv. Mater., 2015, 27, (8), pp. 13161326.
        . Adv. Mater. , 8 , 1316 - 1326
    12. 12)
      • J. Chen , G. Zhu , W. Yang .
        12. Chen, J., Zhu, G., Yang, W., et al: ‘Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor’, Adv. Mater., 2013, 25, (42), pp. 60946099.
        . Adv. Mater. , 42 , 6094 - 6099
    13. 13)
      • B.C. Lee , G.S. Chung .
        13. Lee, B.C., Chung, G.S.: ‘Frequency tuning design for vibration-driven electromagnetic energy harvester’, IET Renew. Power Gener., 2015, 9, (7), pp. 801808.
        . IET Renew. Power Gener. , 7 , 801 - 808
    14. 14)
      • J. Yang , J. Chen , Y. Liu .
        14. Yang, J., Chen, J., Liu, Y., et al: ‘Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing’, ACS Nano, 2014, 8, (3), pp. 26492657.
        . ACS Nano , 3 , 2649 - 2657
    15. 15)
      • J. Chen , G. Zhu , J. Yang .
        15. Chen, J., Zhu, G., Yang, J., et al: ‘Personalized keystroke dynamics for self-powered human-machine interfacing’, ACS Nano, 2015, 9, (1), pp. 105116.
        . ACS Nano , 1 , 105 - 116
    16. 16)
      • G. Zhu , Y. Su , P. Bai .
        16. Zhu, G., Su, Y., Bai, P., et al: ‘Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface’, ACS Nano, 2014, 8, (6), pp. 60316037.
        . ACS Nano , 6 , 6031 - 6037
    17. 17)
      • G.W. Taylor , J.R. Burns , S.M. Kammann .
        17. Taylor, G.W., Burns, J.R., Kammann, S.M., et al: ‘The energy harvesting EEL: a small subsurface ocean/river power generator’, IEEE J. Oceanic Eng., 2001, 26, (4), pp. 539547.
        . IEEE J. Oceanic Eng. , 4 , 539 - 547
    18. 18)
      • I.G. Bryden , S.J. Couch .
        18. Bryden, I.G., Couch, S.J.: ‘ME1 – marine energy extraction: tidal resource analysis’, Renew. Energy, 2006, 31, (2), pp. 133139.
        . Renew. Energy , 2 , 133 - 139
    19. 19)
      • M. Tutar , I. Veci .
        19. Tutar, M., Veci, I.: ‘Experimental study on performance assessment of Savonius rotor type wave energy converter in an experimental wave flume’, IET Renew. Power Gener., 2016, 10, (4), pp. 541550.
        . IET Renew. Power Gener. , 4 , 541 - 550
    20. 20)
      • Z.H. Lin , G. Cheng , S. Lee .
        20. Lin, Z.H., Cheng, G., Lee, S., et al: ‘Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process’, Adv. Mater., 2014, 26, (27), pp. 46904696.
        . Adv. Mater. , 27 , 4690 - 4696
    21. 21)
      • D. Zhao , C. Ji , C. Teo .
        21. Zhao, D., Ji, C., Teo, C., et al: ‘Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air’, Energy, 2014, 74, pp. 99108.
        . Energy , 99 - 108
    22. 22)
      • M.J. Khan , G. Bhuyan , M.T. Iqbal .
        22. Khan, M.J., Bhuyan, G., Iqbal, M.T., et al: ‘Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review’, Appl. Energy, 2009, 86, (10), pp. 18231835.
        . Appl. Energy , 10 , 1823 - 1835
    23. 23)
      • M. Bryant , A.D. Schlichting , E. Garcia .
        23. Bryant, M., Schlichting, A.D., Garcia, E.: ‘Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching’, 2013, 8688, p. 868807.
        . , 868807
    24. 24)
      • T. Çιkιm , D. Gözüaçık , A. Koşar .
        24. Çιkιm, T., Gözüaçık, D., Koşar, A.: ‘Power reclamation efficiency of a miniature energy-harvesting device using external fluid flows’, Int. J. Energy Res., 2014, 38, (10), pp. 13181330.
        . Int. J. Energy Res. , 10 , 1318 - 1330
    25. 25)
      • R. Song , X. Shan , F. Lv .
        25. Song, R., Shan, X., Lv, F., et al: ‘A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension’, Ceram. Int., 2015, 41, pp. S768S773.
        . Ceram. Int. , S768 - S773
    26. 26)
      • A. Giacomello , M. Porfiri .
        26. Giacomello, A., Porfiri, M.: ‘Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites’, J. Appl. Phys., 2011, 109, (8), p. 084903.
        . J. Appl. Phys. , 8 , 084903
    27. 27)
      • D.A. Wang , C.Y. Chiu , P. Huy-Tuan .
        27. Wang, D.A., Chiu, C.Y., Huy-Tuan, P.: ‘Electromagnetic energy harvesting from vibrations induced by Karman vortex street’, Mechatronics, 2012, 22, (6), pp. 746756.
        . Mechatronics , 6 , 746 - 756
    28. 28)
      • D.A. Wang , H.H. Ko .
        28. Wang, D.A., Ko, H.H.: ‘Piezoelectric energy harvesting from flow-induced vibration’, J. Micromech. Microeng., 2010, 20, (2), p. 025019.
        . J. Micromech. Microeng. , 2 , 025019
    29. 29)
      • B.J.F. Biggs , D.G. Goring , V.I. Nikora .
        29. Biggs, B.J.F., Goring, D.G., Nikora, V.I.: ‘Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form’, J. Phycol., 1998, 34, (4), pp. 598607.
        . J. Phycol. , 4 , 598 - 607
    30. 30)
      • R. Violette , E. de Langre , J. Szydlowski .
        30. Violette, R., de Langre, E., Szydlowski, J.: ‘Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments’, Comput. Struct., 2007, 85, (11–14), pp. 11341141.
        . Comput. Struct. , 1134 - 1141
    31. 31)
      • Y.J. Chung , S.H. Kang .
        31. Chung, Y.J., Kang, S.H.: ‘Laminar vortex shedding from a trapezoidal cylinder with different height ratios’, Phys. Fluids, 2000, 12, (5), p. 1251.
        . Phys. Fluids , 5 , 1251
    32. 32)
      • H.R. Yun , D.J. Lee , J.R. Youn .
        32. Yun, H.R., Lee, D.J., Youn, J.R., et al: ‘Ferrohydrodynamic energy harvesting based on air droplet movement’, Nano Energy, 2015, 11, pp. 171178.
        . Nano Energy , 171 - 178
    33. 33)
      • J.F. Dillinger , R.M. Bozorth .
        33. Dillinger, J.F., Bozorth, R.M.: ‘Heat treatment of magnetic materials in a magnetic field I. Survey of iron-cobalt-nickel alloys’, Phys., J. Gen. Appl. Phys., 1935, 6, (1), pp. 279284.
        . Phys., J. Gen. Appl. Phys. , 1 , 279 - 284
    34. 34)
      • H. Babinsky .
        34. Babinsky, H.: ‘How do wings work?’, Phys. Educ., 2003, 38, (6), p. 497.
        . Phys. Educ. , 6 , 497
    35. 35)
      • G. Zhu , Y.S. Zhou , P. Bai .
        35. Zhu, G., Zhou, Y.S., Bai, P., et al: ‘A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification’, Adv. Mater., 2014, 26, (23), pp. 37883796.
        . Adv. Mater. , 23 , 3788 - 3796
    36. 36)
      • Y.L. Zi , L. Lin , J. Wang .
        36. Zi, Y.L., Lin, L., Wang, J., et al: ‘Triboelectric–pyroelectric–piezoelectric hybrid cell for high efficiency energy-harvesting and self-powered sensing’, Adv. Mater., 2015, 27, (14), pp. 23402347.
        . Adv. Mater. , 14 , 2340 - 2347
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0612
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0612
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address