Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Asymmetric arc-shaped vortex-induced electromagnetic generator for harvesting energy from low-velocity flowing water

In this study, a novel small-scale electromagnetic energy harvester is designed and optimised, which aims at addressing the limitations of existing approaches in output power scavenged from low-velocity flowing water. Instead of conventional cantilever beams, an asymmetric arc-shaped elastic beam is implemented to disrupt flow, leading to its oscillation in the induced unsteady flow field. An electromagnetic transducer is utilised to convert kinetic energy into electrical energy. Furthermore, the effects of the structure asymmetry and curvature on the electrical outputs are investigated to optimise the scavenging energy capability. A prototype with the volume of 152.4 cm3 is fabricated and tested. A maximum open-circuit voltage of 1440 mV is obtained at 0.409 m/s, and the harvester generates an output power of 0.503 mW when it is connected to an external load of 110 Ω. The small-scale harvester shows great potential for applying in wireless sensor networks.

References

    1. 1)
      • 3. Khelifa, A., Touafek, K., Moussa, H.B.: ‘Approach for the modelling of hybrid photovoltaic–thermal solar collector’, IET Renew. Power Gener., 2015, 9, (3), pp. 207217.
    2. 2)
      • 27. Wang, D.A., Chiu, C.Y., Huy-Tuan, P.: ‘Electromagnetic energy harvesting from vibrations induced by Karman vortex street’, Mechatronics, 2012, 22, (6), pp. 746756.
    3. 3)
      • 8. Cheng, G., Lin, Z.-H., Du, Z.-L., et al: ‘Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator’, ACS Nano, 2014, 8, (2), pp. 19321939.
    4. 4)
      • 28. Wang, D.A., Ko, H.H.: ‘Piezoelectric energy harvesting from flow-induced vibration’, J. Micromech. Microeng., 2010, 20, (2), p. 025019.
    5. 5)
      • 35. Zhu, G., Zhou, Y.S., Bai, P., et al: ‘A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification’, Adv. Mater., 2014, 26, (23), pp. 37883796.
    6. 6)
      • 10. Yang, J., Chen, J., Yang, Y., et al: ‘Broadband vibrational energy harvesting based on a triboelectric nanogenerator’, Adv. Energy Mater., 2014, 4, (6), p. 1301322.
    7. 7)
      • 14. Yang, J., Chen, J., Liu, Y., et al: ‘Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing’, ACS Nano, 2014, 8, (3), pp. 26492657.
    8. 8)
      • 20. Lin, Z.H., Cheng, G., Lee, S., et al: ‘Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process’, Adv. Mater., 2014, 26, (27), pp. 46904696.
    9. 9)
      • 18. Bryden, I.G., Couch, S.J.: ‘ME1 – marine energy extraction: tidal resource analysis’, Renew. Energy, 2006, 31, (2), pp. 133139.
    10. 10)
      • 6. Yu, X., Han, X., Zhao, Z., et al: ‘Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: a highly efficient photoelectrocatalytic device entirely based on renewable energy’, Nano Energy, 2015, 11, pp. 1927.
    11. 11)
      • 11. Yang, J., Chen, J., Su, Y., et al: ‘Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition’, Adv. Mater., 2015, 27, (8), pp. 13161326.
    12. 12)
      • 12. Chen, J., Zhu, G., Yang, W., et al: ‘Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor’, Adv. Mater., 2013, 25, (42), pp. 60946099.
    13. 13)
      • 15. Chen, J., Zhu, G., Yang, J., et al: ‘Personalized keystroke dynamics for self-powered human-machine interfacing’, ACS Nano, 2015, 9, (1), pp. 105116.
    14. 14)
      • 7. Chen, J., Yang, J., Guo, H.Y., et al: ‘Automatic mode transition enabled robust triboelectric nanogenerators’, ACS Nano, 2015, 9, (12), pp. 1233412343.
    15. 15)
      • 9. Chen, J., Yang, J., Li, Z., et al: ‘Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy’, ACS Nano, 2015, 9, (3), pp. 33243331.
    16. 16)
      • 13. Lee, B.C., Chung, G.S.: ‘Frequency tuning design for vibration-driven electromagnetic energy harvester’, IET Renew. Power Gener., 2015, 9, (7), pp. 801808.
    17. 17)
      • 5. Qiu, Y., Zhang, W., Infield, D., et al: ‘Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data’, IET Renew. Power Gener., 2016, 10, (5), pp. 661668.
    18. 18)
      • 26. Giacomello, A., Porfiri, M.: ‘Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites’, J. Appl. Phys., 2011, 109, (8), p. 084903.
    19. 19)
      • 29. Biggs, B.J.F., Goring, D.G., Nikora, V.I.: ‘Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form’, J. Phycol., 1998, 34, (4), pp. 598607.
    20. 20)
      • 31. Chung, Y.J., Kang, S.H.: ‘Laminar vortex shedding from a trapezoidal cylinder with different height ratios’, Phys. Fluids, 2000, 12, (5), p. 1251.
    21. 21)
      • 24. Çιkιm, T., Gözüaçık, D., Koşar, A.: ‘Power reclamation efficiency of a miniature energy-harvesting device using external fluid flows’, Int. J. Energy Res., 2014, 38, (10), pp. 13181330.
    22. 22)
      • 22. Khan, M.J., Bhuyan, G., Iqbal, M.T., et al: ‘Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review’, Appl. Energy, 2009, 86, (10), pp. 18231835.
    23. 23)
      • 34. Babinsky, H.: ‘How do wings work?’, Phys. Educ., 2003, 38, (6), p. 497.
    24. 24)
      • 1. Dewan, A., Ay, S.U., Karim, M.N., et al: ‘Alternative power sources for remote sensors: a review’, J. Power Sources, 2014, 245, pp. 129143.
    25. 25)
      • 17. Taylor, G.W., Burns, J.R., Kammann, S.M., et al: ‘The energy harvesting EEL: a small subsurface ocean/river power generator’, IEEE J. Oceanic Eng., 2001, 26, (4), pp. 539547.
    26. 26)
      • 36. Zi, Y.L., Lin, L., Wang, J., et al: ‘Triboelectric–pyroelectric–piezoelectric hybrid cell for high efficiency energy-harvesting and self-powered sensing’, Adv. Mater., 2015, 27, (14), pp. 23402347.
    27. 27)
      • 25. Song, R., Shan, X., Lv, F., et al: ‘A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension’, Ceram. Int., 2015, 41, pp. S768S773.
    28. 28)
      • 2. Yang, J., Yu, Q., Zhao, J., et al: ‘Design and optimization of a bi-axial vibration-driven electromagnetic generator’, J. Appl. Phys., 2014, 116, (11), p. 114506.
    29. 29)
      • 21. Zhao, D., Ji, C., Teo, C., et al: ‘Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air’, Energy, 2014, 74, pp. 99108.
    30. 30)
      • 23. Bryant, M., Schlichting, A.D., Garcia, E.: ‘Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching’, 2013, 8688, p. 868807.
    31. 31)
      • 4. Cooper, S.J.G., McManus, M.C., Pudjianto, D., et al: ‘Detailed simulation of electrical demands due to nationwide adoption of heat pumps, taking account of renewable generation and mitigation’, IET Renew. Power Gener., 2016, 10, (3), pp. 380387.
    32. 32)
      • 19. Tutar, M., Veci, I.: ‘Experimental study on performance assessment of Savonius rotor type wave energy converter in an experimental wave flume’, IET Renew. Power Gener., 2016, 10, (4), pp. 541550.
    33. 33)
      • 16. Zhu, G., Su, Y., Bai, P., et al: ‘Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface’, ACS Nano, 2014, 8, (6), pp. 60316037.
    34. 34)
      • 30. Violette, R., de Langre, E., Szydlowski, J.: ‘Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments’, Comput. Struct., 2007, 85, (11–14), pp. 11341141.
    35. 35)
      • 33. Dillinger, J.F., Bozorth, R.M.: ‘Heat treatment of magnetic materials in a magnetic field I. Survey of iron-cobalt-nickel alloys’, Phys., J. Gen. Appl. Phys., 1935, 6, (1), pp. 279284.
    36. 36)
      • 32. Yun, H.R., Lee, D.J., Youn, J.R., et al: ‘Ferrohydrodynamic energy harvesting based on air droplet movement’, Nano Energy, 2015, 11, pp. 171178.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0612
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0612
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address