http://iet.metastore.ingenta.com
1887

Approach of hybrid PBIL control in distributed generation parameters for IEEE and real time Indian utility system

Approach of hybrid PBIL control in distributed generation parameters for IEEE and real time Indian utility system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a method for regulation parameters of a distributed generation (DG) system by means of a hybrid optimisation algorithm. This aims in increasing the stability and reducing the losses and the cost of generation. The hybrid algorithm which includes probability based incremental learning and micro genetic algorithm are tested among other computational intelligence techniques to validate the efficiency of the method by maximising the total social welfare and minimising the network congestion. Simultaneous optimisation of DG parameters which includes DG size, location and type is explored using generation rescheduling and with load curtailment which is vindicated on a modified IEEE distribution system and in a real time Indian utility system. Results show us that the proposed method presents advantages of low computational complexity.

References

    1. 1)
      • 1. EI-Zonkoly, A.M.: ‘Optimal placement of multi-distributed generation units including different load models using particle swarm optimization’, IET Gener. Transm. Distrib., 2011, 5, (7), pp. 760771.
    2. 2)
      • 2. Akorde, M.F., Nizam, H., Aris, I., et al: ‘A review of strategies for optimal placement of distributed generation in power distribution systems’, Res. J. Appl. Sci., 2011, 5, (2), pp. 137145.
    3. 3)
      • 3. Xu, Q., He, D., Zhang, N., et al: ‘A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 12831291.
    4. 4)
      • 4. Wang, C., Nehrir, M.H.: ‘Analytical approaches for optimal placement of distributed generation sources in power systems’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20682076.
    5. 5)
      • 5. Alagoz, B.B., Kaygusuz, A.: ‘Dynamic energy pricing by closed loop fractional- order PI control system and energy balancing in smart grid energy markets’, Trans. Inst. Meas. Control, 2016, 38, (5), pp. 565578.
    6. 6)
      • 6. Kaplan, M.: ‘Optimization of number, location, size, control type and control setting of shunt capacitors on radial distribution feeders’, IEEE Trans. Power Appar. Syst., 1984, 103, (9), pp. 26592665.
    7. 7)
      • 7. Acharya, N., Mahat, P., Mithulananthan, N.: ‘An analytical approach for DG allocation in primary distribution network’, Int. J. Electr. Power Energy Syst., 2006, 28, (10), pp. 669678.
    8. 8)
      • 8. Zhi-Yu, X., Hai-Nai, Q., Wei-Hui, S., et al: ‘Virtual power plant –based pricing control for wind/thermal cooperated generation in China’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (5), pp. 706712.
    9. 9)
      • 9. Celli, G., Pilo, F.: ‘Penetration level assessment of distributed allocation in MV distribution networks’. 22nd IEEE PES Int. Conf. on Power Industry Computer Applications, PICA 2001, Sydney, 2001, pp. 8186.
    10. 10)
      • 10. Moghaddas-Tafreshi, S.M., Mashhour, E.: ‘Distributed generation modeling for power flow studies and a three phase unbalanced power flow solution for radial distribution systems considering distributed generation’, Electr. Power Syst. Res., 2009, 79, (4) pp. 680686.
    11. 11)
      • 11. Zareipour, H., Bhattacharya, K., Canizares, C.A.: ‘Distributed generation: current status and challenges’. IEEE Proc. of NAPS, 2004.
    12. 12)
      • 12. Jiang, W., Zhang, L., zhao, H.: ‘Research on power sharing strategy of hybrid energy storage system in photovoltaic power station based on multi objective optimization’, IET Renew. Power Gener., 2016, 10, (5), pp. 575583.
    13. 13)
      • 13. Gozel, T., Hocaoglu, M.H.: ‘Än analytical method for the sizing and sitting of distributed generators in radial system’, Int. J. Electr. Power Syst. Res., 2009, 79, pp. 912918.
    14. 14)
      • 14. Silvestri, A., Berizzi, A., Buonanno, S.: ‘Distributed generation planning using genetic algorithms’. Int. Conf. Electric Power Engineering, Power Tech Budapest 99, 1999, p. 257.
    15. 15)
      • 15. Ziari, I., Ledwich, G., Ghosh, A., et al: ‘Integrated distribution systems planning to improve reliability under load growth’, IEEE Trans. Power Deliv., 2012, 27, (2), p. 757.
    16. 16)
      • 16. Nayanatara, C., Baskaran, J., Kothari, D.P.: ‘GA implemented for distribution generation parameters in IEEE and indian utility system’, Middle-East J. Sci. Res., 2015, 23, (6), pp. 11271136.
    17. 17)
      • 17. Nayanatara, C., Baskaran, J., Kothari, D.P.: ‘Hybrid optimization implemented for distributed generation parameters in a power system network’, Int. J. Electr. Power Energy Syst.2016, 78, pp. 690699.
    18. 18)
      • 18. Nayanatara, C., Baskaran, J., Kothari, D.P.: ‘Simulated annealing approach for congestion minimization using distributed powerr generation’, 2015, 1 pp. 02760281, 978-1-4673-6524-6.
    19. 19)
      • 19. Baranand, M.E., Wu, F.F.: ‘Optimum sizing of capacitor placed on radial distribution systems’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 735743.
    20. 20)
      • 20. Yammani, C., Maheswarapu, S., kumari, s.: ‘Optimal placement of Multi DGs in distribution system with considering the DG bus available limits’, Energy Power, 2012, 2, (1), pp. 1823.
    21. 21)
      • 21. Chowdhury, A.A., Agarwal, S.K., Koval, D.O.: ‘Reliability modeling of distributed generation in conventional distribution systems planning and analysis’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14931498.
    22. 22)
      • 22. Teng, J.-H., Liu, Y.-H., Chen, C.-Y., et al: ‘Value- based distributed generator placements for service quality improvements’, Int. J. Electr. Power Energy Syst., 2007, 29, (3), pp. 268274.
    23. 23)
      • 23. Hosseizadeh, M., salmasi, F.R.: ‘Power management of an isolated hybrid AC/DCmicro-grid with fuzzy control of battery banks’, IET Renew. Power Gener., 2015, 9, (5), pp. 484493.
    24. 24)
      • 24. Alagoz, B.B., Kygusuz, A., Akcin, M., et al: ‘A closed loop energy price controlling method for real time energy balancing in a smart grid energy market’, Energy, 2013, 59, pp. 95104.
    25. 25)
      • 25. Rau, N.S., Wan, Y.H.: ‘Optimum location of resources in distributed planning’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 20142020.
    26. 26)
      • 26. Singh, R.K., Goswami, S.K.: ‘Optimum allocation of distributed generations based on nodal pricing for profit, loss reduction and voltage improvement including voltage rise issue’, Int. J. Electr. Power Energy Syst., 2010, 32, (6), pp. 637644.
    27. 27)
      • 27. Ackermann, T., Andersson, G., Soder, L.: ‘Distributed generation: A definition’, Electr. Power Syst. Res., 2001, 57, (3), pp. 195204.
    28. 28)
      • 28. Khattam, W.E., Bhattacharya, K., Hegazy, Y., et al: ‘Optimal investment planning for distributed generation in a competitive electricity market’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 206212.
    29. 29)
      • 29. Singh, A.K., Parid, S.K.: ‘Evaluation of current status and future directions of wind energy in India’, Clean Technol. Environ. Policy, 2013, 15, (4), pp. 643655.
    30. 30)
      • 30. Elgerd, I.O.: ‘Energy system theory-an introduction’ (McGraw-Hill Inc., New York, 1971).
    31. 31)
      • 31. Kothari, D.P., Dhillon, J.S.: ‘Power system optimization’ (Prentice-Hall, New Delhi, 2006).
    32. 32)
      • 32. Goldberg, D.E.: ‘Genetic algorithms in search, optimization and machine learning’ (Addison-Wesley, 1989).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0581
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0581
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address