access icon free Reactive power performance analysis of dish–Stirling solar thermal–diesel hybrid energy system

Reactive power analysis of an autonomous hybrid energy system consisting of dish–Stirling solar thermal system (DSTS), diesel engine generator and static VAR compensator (SVC) has been conducted. Diesel engine coupled to a synchronous generator equipped with automatic voltage regulator (AVR) and DSTS is connected to an induction generator. The parameters of the proportional–integral controllers, employed with SVC and AVR are optimised simultaneously using genetic algorithm (GA), particle swarm optimisation (PSO) and flower pollination algorithm (FPA) techniques. The comparative performance of GA, PSO and FPA optimised controllers on the hybrid system model has been presented considering step change and random variations of solar thermal power as well as reactive power load. Simulation results revealed that FPA optimised controllers for AVR and SVC can provide the improved dynamic performance of the hybrid energy system as compared with GA and PSO optimised controllers.

Inspec keywords: photothermal conversion; photovoltaic power systems; PI control; reactive power; particle swarm optimisation; power generation control; asynchronous generators; static VAr compensators; voltage control; diesel-electric generators; genetic algorithms; hybrid power systems; synchronous generators

Other keywords: PSO; genetic algorithm; dynamic performance improvement; step change; reactive power load; DSTS; SVC; static VAR compensator; particle swarm optimisation; autonomous hybrid energy system; proportional-integral controllers; random variations; automatic voltage regulator; AVR; dish-Stirling solar thermal-diesel hybrid energy system; induction generator; reactive power performance analysis; FPA optimised controllers; diesel engine generator; synchronous generator; flower pollination algorithm

Subjects: Solar power stations and photovoltaic power systems; Asynchronous machines; Diesel power stations and plants; Other power apparatus and electric machines; Optimisation techniques; Control of electric power systems; Other direct energy conversion; Optimisation techniques; Synchronous machines; Voltage control

References

    1. 1)
      • 26. Padiyar, K.R.: ‘Power systems dynamics, stability and control’ (Interline Publishing, Bangalore, India, 1996).
    2. 2)
      • 6. Bansal, R.C.: ‘Three-phase self-excited induction generators (SEIG): an overview’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 292299.
    3. 3)
      • 27. Bansal, R.C., Bhatti, T.S.: ‘Reactive power control of autonomous wind-diesel hybrid power systems using Simulink’, Electr. Power Compon. Syst., 2007, 35, (12), pp. 13451366.
    4. 4)
      • 20. Abbas, M., Boumeddane, B., Said, N., et al: ‘Dish Stirling technology: a 100 MW solar power plant using hydrogen for Algeria’, Int. J. Hydrog. Energy, 2011, 36, (7), pp. 43054314.
    5. 5)
      • 29. Bansal, R.C., Bhatti, T.S.: ‘Small signal analysis of isolated hybrid power systems: reactive power and frequency control analysis’ (Narosa Publishing House, New Delhi, India, 2008).
    6. 6)
      • 12. Bansal, R.C., Bhatti, T.S., Kothari, D.R.: ‘A novel mathematical modelling of induction generator for reactive power control of isolated hybrid power systems’, Int. J. Model. Simul., 2004, 24, (1), pp. 17.
    7. 7)
      • 5. Li, Y., Choi, S.S., Yang, C., et al: ‘Design of variable-speed dish-Stirling solar–thermal power plant for maximum energy harness’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 394403.
    8. 8)
      • 22. Wu, S.Y., Xiao, L., Cao, Y., et al: ‘A parabolic dish/AMTEC solar thermal power system and its performance evaluation’, Appl. Energy, 2010, 87, (2), pp. 452462.
    9. 9)
      • 21. Santos-Martin, D., Alonso-Martinez, J., Eloy-Garcia, J., et al: ‘Solar dish Stirling system optimisation with a doubly fed induction generator’, IET Renew. Power Gener., 2012, 6, (4), pp. 276288.
    10. 10)
      • 36. Kim, J.S., Kim, J.H., Park, J.M., et al: ‘Auto tuning PID controller based on improved genetic algorithm for reverse osmosis plant’, World Acad. Sci. Eng. Technol., 2008, 47, pp. 384389.
    11. 11)
      • 31. Kamyab, G.R., Fotuhi-Firuzabad, M., Rashidinejad, M.: ‘A PSO based approach for multi-stage transmission expansion planning in electricity markets’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 91100.
    12. 12)
      • 18. Lu, T., Li, N., Zhang, Z., et al: ‘Study on the continuous and stable running mode of solar thermal power plant’. Int. Conf. on Sustainable Power Generation and Supply, 2009, pp. 14.
    13. 13)
      • 28. Elgerd, O.I.: ‘Electric energy systems theory an introduction’ (Tata McGraw-Hill Publishing limited, New Delhi, 1983, 2nd edn.).
    14. 14)
      • 33. Das, D.C., Roy, A.K., Sinha, N.: ‘GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 262279.
    15. 15)
      • 3. Aichmayer, L., Spelling, J., Laumert, B., et al: ‘Micro gas-turbine design for small-scale hybrid solar power plants’, J. Eng. Gas Turbines Power, 2013, 135, (11), p. 113001.
    16. 16)
      • 24. Reddy, K.S., Veershetty, G.: ‘Viability analysis of solar parabolic dish stand-alone power plant for Indian conditions’, Appl. Energy, 2013, 102, pp. 908922.
    17. 17)
      • 11. Bansal, R.C.: ‘ANN based reactive power control of isolated wind diesel micro-hydro hybrid power systems’, Int. J. Model. Identif. Control, 2009, 6, (3), pp. 196204.
    18. 18)
      • 30. Shivakumar, R., Lakshmipathi, R.: ‘Implementation of an innovative bio inspired GA and PSO algorithm for controller design considering steam GT dynamics’, Int. J. Comput. Sci., 2010, 7, (1), pp. 1828.
    19. 19)
      • 4. Bravo, Y., Monné, C., Bernal, N., et al: ‘Hybridization of solar dish-Stirling technology: analysis and design’, Environ. Prog. Sustain. Energy, 2014, 33, (4), pp. 14591466.
    20. 20)
      • 13. Vachirasricirikul, S., Ngamroo, I., Kaitwanidvilai, S.: ‘Coordinated SVC and AVR for robust voltage control in a hybrid wind-diesel system’, Energy Convers. Manage., 2010, 51, (12), pp. 23832393.
    21. 21)
      • 32. Gaing, Z.L.: ‘A particle swarm optimization approach for optimum design of PID controller in AVR system’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 384391.
    22. 22)
      • 25. Bansal, R.C.: ‘Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN’, Energy Convers. Manage., 2008, 49, (2), pp. 357364.
    23. 23)
      • 17. Kongtragool, B., Wongwises, S.: ‘A review of solar-powered Stirling engines and low temperature differential Stirling engines’, Renew. Sustain. Energy Rev., 2003, 7, (2), pp. 131154.
    24. 24)
      • 2. Howard, D.F., Harley, R.G.: ‘Modeling of dish-Stirling solar thermal power generation’. IEEE PES, General Meeting, 2010, pp. 17.
    25. 25)
      • 34. Li, X.Z., Yu, F., Wang, Y.B.: ‘PSO algorithm based online self-tuning of PID controller’. IEEE Int. Conf. on Computational Intelligence and Security, 2007, pp. 128132.
    26. 26)
      • 7. Bansal, R.C.: ‘Automatic reactive-power control of isolated wind diesel hybrid power systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 11161126.
    27. 27)
      • 35. Mohanty, S.R., Kishor, N., Ray, P.K.: ‘Robust H-infinite loop shaping controller based on hybrid PSO and harmonic search for frequency regulation in hybrid distributed generation system’, Int. J. Electr. Power Energy Syst., 2014, 60, pp. 302316.
    28. 28)
      • 16. Tlili, I., Timoumi, Y., Nasrallah, S.B.: ‘Analysis and design consideration of mean temperature differential Stirling engine for solar application’, Renew. Energy, 2008, 33, (8), pp. 19111921.
    29. 29)
      • 10. Al-Alawi, S.M., Ellithy, K.A.: ‘Tuning of SVC damping controllers over a wide range of load models using an artificial neural network’, Int. J. Electr. Power Energy Syst., 2000, 22, (6), pp. 405420.
    30. 30)
      • 23. Jaffe, L.D.: ‘Test results on parabolic dish concentrators for solar thermal power systems’, Sol. Energy, 1989, 42, (2), pp. 173187.
    31. 31)
      • 8. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., et al: ‘Particle swarm optimization: basic concepts, variants and applications in power systems’, IEEE Trans. Evol. Comput., 2008, 12, (2), pp. 171194.
    32. 32)
      • 9. Cheng, C.H., Hsu, Y.Y.: ‘Damping of generator oscillations using an adaptive static var compensator’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 718725.
    33. 33)
      • 37. Yang, X.S.: ‘Flower pollination algorithm for global optimization’. Int. Conf. on Unconventional Computing and Natural Computation, 2012, pp. 240249.
    34. 34)
      • 1. Howard, D.F., Liang, J., Harley, R.G.: ‘Control of receiver temperature and shaft speed in dish-Stirling solar power’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 398405.
    35. 35)
      • 19. Mancini, T., Heller, P., Butler, B., et al: ‘Dish-Stirling systems: an overview of development and status’, J. Sol. Energy Eng., 2003, 125, (2), pp. 135151.
    36. 36)
      • 15. Demirtas, M.: ‘Off-line tuning of a PI speed controller for a permanent magnet brushless DC motor using DSP’, Trans. Energy Convers. Manag., 2011, 52, (1), pp. 264273.
    37. 37)
      • 14. GirirajKumar, S.M., Jayaraj, D., Kishan, A.R.: ‘PSO based tuning of a PID controller for a high performance drilling machine’, Int. J. Comput. Appl., 2010, 1, (19), pp. 1217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0579
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0579
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading