access icon free Fault detection of HVDC cable in multi-terminal offshore wind farms using transient sheath voltage

With respect to rapid growth of offshore wind power, multi-terminal HVDC system is going to be an attractive way of the power transmission for remote and large offshore wind farms. Since the HVDC cables are the vital component of the multi-terminal HVDC transmission system, an accurate and fast fault detection method is necessary for protection and maintaining uninterrupted power delivery to the main grid. This study presents a novel method to diagnose HVDC cable faults and unbalancing of DC capacitor bank in multi-terminal voltage source converter HVDC systems for offshore wind farms. Transient voltage of cable sheath is investigated as a main parameter for detecting types of cable faults. Extensive simulations are performed on EMTDC-PSCAD platform and the results show the effectiveness of the proposed technique.

Inspec keywords: fault diagnosis; power transmission faults; HVDC power transmission; wind power plants; voltage-source convertors; submarine cables

Other keywords: transient sheath voltage; DC capacitor bank; multiterminal HVDC transmission system; fault detection; HVDC cable faults; EMTDC-PSCAD platform; uninterrupted power delivery; power transmission; multiterminal voltage source converter HVDC systems; multiterminal offshore wind farms

Subjects: Wind power plants; d.c. transmission; Power cables; DC-AC power convertors (invertors)

References

    1. 1)
      • 6. Schettler, F., Huang, H., Christl, N.: ‘HVDC transmission systems using voltage sourced converters – design and applications’. Proc. IEEE Power Engineering Society Summer Meeting, 2000, pp. 715720.
    2. 2)
      • 18. Baran, M.E., Mahajan, N.R.: ‘Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    3. 3)
      • 15. Takeda, H., Ayakawa, H., Tsumenaga, M., et al: ‘New protection method for HVDC lines including cables’, IEEE Trans. Power Deliv., 1995, 10, (4), pp. 20352039.
    4. 4)
      • 2. Xu, L., Andersen, B.R.: ‘Grid connection of large offshore wind farms using HVDC’, Wind Energy, 2006, 9, (4), pp. 371382.
    5. 5)
      • 33. Bucher, M.K., Franck, C.M.: ‘Contribution of fault current sources in multiterminal HVDC cable networks’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 17961803.
    6. 6)
      • 17. Darwish, H.A., Taalab, A.M.I., Rahman, M.A.: ‘Performance of HVDC converter protection during internal faults’. Proc. IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006, pp. 5759.
    7. 7)
      • 25. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘Short-circuit and ground fault analysis and location in VSC-based DC network cables’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 38273837.
    8. 8)
      • 14. Lu, W., Ooi, B.T.: ‘Optimal acquisition and aggregation of offshore wind power by multiterminal voltage source HVDC’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 201206.
    9. 9)
      • 32. Nguefeu, S., Rault, P., Grieshaber, W., et al: ‘DEMO 3 requirement specifications: detailed specifications for a DC network and detailed specifications for ALSTOM grid's DC breaker’. Deliverable n°11.1 of the Twenties Project, 2012, available at http://www.twentiesproject.eu/node/18, accessed January 2014.
    10. 10)
      • 38. Morched, A., Gustavsen, B., Tartibi, M.: ‘A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10321038.
    11. 11)
      • 28. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. Proc. IEEE IPEC, Sapporo, Japan, June 2010, pp. 502507.
    12. 12)
      • 9. Gomis-Bellmunt, O., Liang, J., Ekanayake, J., et al: ‘Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms’, Electr. Power Syst. Res., 2011, 81, (1), pp. 271281.
    13. 13)
      • 27. Rodriguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    14. 14)
      • 31. Baran, M.E., Mahajan, N.R.: ‘DC distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    15. 15)
      • 35. Gustavsen, B., Sletbak, J.: ‘Transient sheath overvoltages in armoured power cables’, IEEE Trans. Power Deliv., 1996, 11, (3), pp. 15941600.
    16. 16)
      • 16. Liu, H., Xu, Z., Huang, Y.: ‘Study of protection strategy for VSC based HVDC system’. Proc. Transmission and Distribution Conf. and Exposition, September 2003.
    17. 17)
      • 10. Jovcic, D.: ‘Interconnecting offshore wind farms using multiterminal VSC-based HVDC’. Proc. IEEE Power Engineering Society General Conf., 2006, pp. 17.
    18. 18)
      • 26. Andersen, B.R., Xu, L., Horton, P.J., et al: ‘Topologies for VSC transmission’, Power Eng. J., 2002, 16, (3), pp. 142150.
    19. 19)
      • 19. Tang, L., Ooi, B.T.: ‘Protection of VSC-multi-terminal HVDC against DC faults’. Proc. IEEE 33rd Annual Power Electronics Specialists Conf., Cairns, Queensland, Australia, 2002, pp. 719724.
    20. 20)
      • 11. Meyer, C., Hoing, M., Peterson, A., et al: ‘Control and design of DC grids for offshore wind farms’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 14751482.
    21. 21)
      • 22. De Kerf, K., Srivastava, K., Reza, M., et al: ‘Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems’, IET. Gener. Transm. Distrib., 2011, 5, pp. 496503.
    22. 22)
      • 36. Gustavsen, B., Sletbak, J., Henriksen, T.: ‘Simulation of transient sheath overvoltages in the presence of proximity effects’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 10661075.
    23. 23)
      • 24. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘Multiterminal dc wind farm collection grid internal fault analysis and protection scheme design’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 23082318.
    24. 24)
      • 20. Tang, L., Ooi, B.T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    25. 25)
      • 8. Reidy, A., Watson, R.: ‘Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm’. IEEE Power Engineering Society General Meeting, San Francisco, CA, 2005.
    26. 26)
      • 13. Xu, L., Yao, L.: ‘DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms’, IET Renew. Power Gener., 2011, 5, (3), pp. 223233.
    27. 27)
      • 12. Liang, J., Jing, T., Gomis-Bellmunt, O., et al: ‘Operation and control of multiterminal HVDC transmission for offshore wind farms’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25962604.
    28. 28)
      • 3. Kirby, N.M., Xu, L., Luckett, M., et al: ‘HVDC transmission for large offshore wind farms’, IEE Power Eng., 2002, 16, (3), pp. 135141.
    29. 29)
      • 21. Candelaria, J., Park, J.-D.: ‘VSC-HVDC System protection: a review of current methods’. Proc. Power Systems Conf. and Exposition (PSCE), March 2011.
    30. 30)
      • 1. Ackermann, T.: ‘Transmission systems for offshore wind farms’, IEEE Power Eng. Rev., 2002, 22, (12), pp. 2327.
    31. 31)
      • 34. Nanayakkara, O.M.K.K., Rajapakse, A.D., Wachal, R.: ‘Traveling-wave-based line fault location in star-connected multiterminal HVDC systems’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 22862294.
    32. 32)
      • 30. Bahrman, M.P., Johnson, B.K.: ‘The ABCs of HVDC transmission technologies’, IEEE Power Energy Mag., 2007, 5, (2), pp. 3244.
    33. 33)
      • 23. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘Protection scheme design for meshed VSC-HVDC transmission systems for large-scale wind farms’. Proc. the 9th Int. Conf. AC and DC Power Transmission, London, UK, 20–21 October 2010.
    34. 34)
      • 4. Morton, A.B., Cowdroy, S., Hill, J.R.A., et al: ‘AC or DC economics of grid connection design for offshore wind farms’. Proc. IEE Int. Conf. AC DC Power Transmission, 2006, pp. 236240.
    35. 35)
      • 5. Negra, N.B., Todorovic, J., Ackermann, T.: ‘Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms’, Electr. Power Syst. Res., 2006, 76, (11), pp. 916927.
    36. 36)
      • 7. Bresesti, P., Kling, W., Hendriks, R., et al: ‘HVDC connection of offshore wind farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    37. 37)
      • 29. Arrillaga, J., Liu, Y.H., Watson, N.R., et al: ‘Self-commutating converters for high power applications’ (Wiley, 2009).
    38. 38)
      • 37. Marti, J.: ‘Accurate modeling of frequency dependent transmission lines in electromagnetic transients simulation’, IEEE Trans. Power Appar. Syst., 1982, 101, (1), pp. 147155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0578
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Erratum: Fault detection of HVDC cable in multi-terminal offshore wind farms using transient sheath voltage