Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-voltage ride-thorough capability of photovoltaic grid-connected neutral-point-clamped inverters with active/reactive power injection

Low-voltage ride-thorough capability is among the challenges in the operation of medium- and large-scale grid-connected photovoltaic power plants (PVPPs). In addition, reactive power injection during voltage sags is required by power system operators in order to enhance the voltage of the point of common coupling. The performance of medium- and large-scale grid-connected PVPPs during these events is studied. An algorithm for the calculation of current references, in the dq-frame, during voltage sags is introduced, which considers the inverter current limitation, grid code requirements and the amount of extracted power from photovoltaic strings. The proposed algorithm uses the full current capacity of the inverter in injecting active or reactive powers to the grid during voltage sags, which leads in a better grid voltage enhancement. The performance of proposed control strategies is investigated on a 150-kVA PVPP connected to the 12.47-kV medium-voltage test-case system simulation model during different fault conditions. An experimental setup of the 3.3-kVA grid-connected three-level neutral-point-clamped inverter with a dc/dc converter illustrates and validates the performance of the controller in injecting required active/reactive power and supporting the network voltage.

References

    1. 1)
      • 24. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: ‘A new single-phase PLL structure based on second order generalized integrator’. Proc. IEEE Power Electronics Specialists Conf., PESC, 2006, pp. 16.
    2. 2)
      • 27. V.D.N.V.E.ON Netz GmbH: ‘Transmission code 2007. Network and system rules of the German transmission system operators’, 2007.
    3. 3)
      • 26. Selvaraj, J.A., Rahim, N.: ‘Multilevel inverter for grid-connected PV system employing digital PI controller’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 149158.
    4. 4)
      • 32. Pinkymol, H.R., Maswood, A.I., Gabriel, O.H.P., et al: ‘Analysis of 3-level inverter scheme with DC-link voltage balancing using LS-PWM and SVM techniques’. Proc. Int. Conf. on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 2013, pp. 10361041.
    5. 5)
      • 7. Khan, O., Xiao, W., Zeineldin, H.H.: ‘Gallium-nitride-based submodule integrated converters for high-efficiency distributed maximum power point tracking PV applications’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 966975.
    6. 6)
      • 5. Hasanien, H.M.: ‘An adaptive control strategy for low voltage ride through capability enhancement of grid-connected photovoltaic power plants’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 32303237.
    7. 7)
      • 28. Yang, Y., Enjeti, P., Blaabjerg, F., et al: ‘Wide-scale adoption of photovoltaic energy: grid code modifications are explored in the distribution grid’, IEEE Ind. Appl. Mag., 2015, 21, (5), pp. 2131.
    8. 8)
      • 4. Xiao, W., Moursi, M.S., El Khan, O., et al: ‘A review of grid-tied converter topologies used in photovoltaic systems’, IET Renew. Power Gener., 2016, Accepted for Publication, 10(10), pp. 15431551.
    9. 9)
      • 12. Kouro, S., Asfaw, K., Goldman, R., et al: ‘NPC multilevel multi-string topology for large scale grid connected photovoltaic systems’. Proc. 2nd IEEE Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Hefei, China, 2010, pp. 400405.
    10. 10)
      • 13. Rivera, S., Kouro, S., Wu, B., et al: ‘Cascaded H-bridge multilevel converter multi-string topology for large scale photovoltaic systems’. Proc. IEEE Int. Symp. on Industrial Electronics (ISIE), Gdansk, Ploand, 2011, pp. 18371844.
    11. 11)
      • 21. Camacho, A., Castilla, M., Miret, J., et al: ‘Active and reactive power strategies with peak current limitation for distributed generation inverters during unbalanced grid faults’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15151525.
    12. 12)
      • 11. Romero-Cadaval, E., Spagnuolo, G., Franquelo, L.G., et al: ‘Grid-connected photovoltaic generation plants: components and operation’, IEEE Ind. Electron. Mag., 2013, 7, (3), pp. 620.
    13. 13)
      • 3. Carla Di Vincenzo, M., Infield, D.: ‘New maximum power point tracker for photovoltaic systems exposed to realistic operational conditions’, IET Renew. Power Gener., 2014, 8, (6), pp. 629637.
    14. 14)
      • 9. Xiao, B., Hang, L., Mei, J., et al: ‘Modular cascaded H-bridge multilevel PV inverter with distributed MPPT for grid-connected applications’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17221731.
    15. 15)
      • 8. Kouro, S., Leon, J.I., Vinnikov, D., et al: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    16. 16)
      • 30. Mirhosseini, M., Pou, J., Agelidis, V.G., et al: ‘A three-phase frequency-adaptive phase-locked loop for independent single-phase operation’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 62556259.
    17. 17)
      • 22. Yang, Y., Blaabjerg, F.: ‘Low-voltage ride-through capability of a single-stage single-phase photovoltaic system connected to the low voltage grid’, Int. J. Photoenergy, 2013, 2013, pp. 19.
    18. 18)
      • 33. Yazdani, A., Di Fazio, A.R., Ghoddami, H., et al: ‘Modeling guidelines and a benchmark for power system simulation studies of three-phase single-stage photovoltaic systems’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 12471264.
    19. 19)
      • 31. Mirhosseini, M., Pou, J., Karanayil, B., et al: ‘Resonant versus conventional controllers in grid-connected photovoltaic power plants under unbalanced grid voltages’, IEEE Trans. Sustain. Energy, 2016, 7(3), pp. 11241132.
    20. 20)
      • 20. Nejabatkhah, F., Li, Y.W., Wu, B.: ‘Control strategies of three-phase distributed generation inverters for grid unbalanced voltage compensation’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 52285241.
    21. 21)
      • 17. Mirhosseini, M., Pou, J., Agelidis, V.: ‘Single- and two-stage inverter-based grid-connected photovoltaic power plants with ride-through capability under grid faults’, IEEE Trans. Sustain. Energy, 2014, 6, (3), pp. 11501159.
    22. 22)
      • 14. Dehghani Tafti, H., Maswood, A.I., Ukil, A., et al: ‘NPC photovoltaic grid-connected inverter using proportional-resonant controller’. Proc. IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Kowloon, Hong Kong, 2014, pp. 16.
    23. 23)
      • 25. Rodriguez, F.J., Bueno, E., Aredes, M., et al: ‘Discrete-time implementation of second order generalized integrators for grid converters’. Proc. IEEE 34th Annual Conf. of Industrial Electronics (IECON), Orlando, FL, 2008, pp. 176181.
    24. 24)
      • 19. Wang, F., Duarte, J.L., Hendrix, M.A.M., et al: ‘Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 905916.
    25. 25)
      • 16. Calle-Prado, A., Alepuz, S., Bordonau, J., et al: ‘Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15031514.
    26. 26)
      • 10. Grasso, A.D., Pennisi, S., Ragusa, M., et al: ‘Performance evaluation of a multistring photovoltaic module with distributed DC–DC converters’, IET Renew. Power Gener., 2015, 9, (8), pp. 935942.
    27. 27)
      • 23. Dehghani Tafti, H., Vahidi, B., Naghizadeh, R.A., et al: ‘Power quality disturbance classification using a statistical and wavelet-based hidden Markov model with Dempster–Shafer algorithm’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 368377.
    28. 28)
      • 15. Dehghani Tafti, H., Maswood, A.I., Lim, Z., et al: ‘NPC photovoltaic grid-connected inverter with ride-through capability under grid faults’. Proc. IEEE 11th Int. Conf. on Power Electronics and Drive Systems, (PEDS), Sydney, 2015, pp. 518523.
    29. 29)
      • 29. Sera, D., Mathe, L., Kerekes, T., et al: ‘On the perturb-and-observe and incremental conductance MPPT methods for PV systems’, IEEE J. Photovolt., 2013, 3, (3), pp. 10701078.
    30. 30)
      • 2. Kasper, M., Bortis, D., Kolar, J.W.: ‘Classification and comparative evaluation of PV panel-integrated dc-dc converter concepts’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 25112526.
    31. 31)
      • 6. Yu, Y., Konstantinou, G., Hredzak, B., et al: ‘Power balance optimization of cascaded H-bridge multilevel converters for large-scale photovoltaic integration’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 11081120.
    32. 32)
      • 1. Bullich-Massague, E., Ferrer-San-Jose, R., Aragues-Penalba, M., et al: ‘Power plant control in large-scale photovoltaic plants: design, implementation and validation in a 9.4 MW photovoltaic plant’, IET Renew. Power Gener., 2016, 10, (1), pp. 5062.
    33. 33)
      • 18. Camacho, A., Castilla, M., Miret, J., et al: ‘Flexible voltage support control for three-phase distributed generation inverters under grid fault’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14291441.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0544
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0544
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address