Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free MOPSO-based optimal control of shunt active power filter using a variable structure fuzzy logic sliding mode controller for hybrid (FC-PV-Wind-Battery) energy utilisation scheme

This paper presents an effective concept for hybrid fuel cell-photovoltaic-wind-battery active power filter (FC-PV-Wind-Battery) energy scheme based on the variable structure sliding mode fuzzy logic controller (SMFLC) using the multi-objective particle swarm optimisation (MOPSO). The parameters of the fuzzy logic control membership functions and the weighting factors of the SMFLC can be tuned by MOPSO in such an approach to optimise the dynamic performance of the shunt active power filter (SAPF) and minimise the total harmonic distortion (THD) of the source current waveform and voltage waveform of the hybrid (FC-PV-Wind-Battery). A group of objective functions was chosen to validate the dynamic performance of the SAPF and the effectiveness of the MOPSO-SMFLC. These selected fitness functions are: (i) minimising the error of the inverter capacitor DC voltage, (ii) minimising the THD of the output current and voltage of DC and AC sides and (iii) minimising the controller reaching time. A computer simulation study using Simulink/Matlab and experimental laboratory prototype were carried on to asses and compare the dynamic performance of the proposed MOPSO-SMFLC controller with the conventional proportional–integral–derivative, variable structure SMFLC, the feed-forward multilayer neural network controller and the variable structure SMFLC based on the single-objective particle swarm optimisation.

References

    1. 1)
      • 10. Ghaffarzadeh, N., Bijani, S.: ‘Dual surface sliding mode controller for photovoltaic systems enhanced by a ripple domain search maximum power point tracking algorithm for fast changing environmental conditions’, IET Renew. Power Gener., 2016, 10, (5), pp. 611622.
    2. 2)
      • 18. Mucientes, M., Moreno, D.L., Bugarin, A., et al: ‘Design of a fuzzy controller in mobile robotics using genetic algorithms’, Appl. Soft Comput., 2007, 7, pp. 540546.
    3. 3)
      • 25. Esmin, A.A.A., Aoki, A., Lambert-Torres, G.: ‘Particle swarm optimisation for fuzzy membership functions optimisation’. Proc. on 2002 IEEE Int. Conf. on Systems, Man, and Cybernetics, Hammamet, Tunisia, 2002.
    4. 4)
      • 19. Cazarez-Castro, N.R., Aguilar, L.T., Castillo, O.: ‘Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash’, Expert Syst. Appl. J., 2010, 37, pp. 43684378.
    5. 5)
      • 7. Ri, S.H., Huang, J., Kim, M.H., et al: ‘A direct adaptive fuzzy sliding mode controller and its application’. The Fifth Annual IEEE Int. Conf. on Cyber Technology in Automation, Control and Intelligent Systems, Shenyang, China, 8–12 June 2015.
    6. 6)
      • 12. Nafa, F., Labiod, S., Chekireb, H.: ‘Direct adaptive fuzzy sliding mode decoupling control for a class of under actuated mechanical systems’, Turk J. Electr. Eng. Comput. Sci, 2013, 21, pp. 16151630.
    7. 7)
      • 8. Mohanty, A., Patra, S., Ray, P.K.: ‘Robust fuzzy-sliding mode based UPFC controller for transient stability analysis in autonomous wind-diesel-PV hybrid system’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12481257.
    8. 8)
      • 26. Esmin, A.A.A., Lambert-Torres, G.: ‘Fitting fuzzy membership functions using hybrid particle swarm optimization’. Proc. on 2006 IEEE Int. Conf. on Fuzzy Systems, Vancouver, BC, Canada, 2006, pp. 21122119.
    9. 9)
      • 3. Biricik, S., Redif, S., Ozerdem, Ö.C., et al: ‘Real-time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter’, IET Power Electron., 2014, 7, (7), pp. 18951905.
    10. 10)
      • 9. Hao, L.-Y., Park, J.H., Ye, D.: ‘Fuzzy logic systems-based integral sliding mode fault-tolerant control for a class of uncertain non-linear systems’, IET Control Theory Applic., 2016, 10, (3), pp. 300311.
    11. 11)
      • 21. Karakuzu, C.: ‘Fuzzy controller training using particle swarm optimisation for nonlinear system control’, ISA Trans., 2008, 47, pp. 229239.
    12. 12)
      • 1. Zhang, L., Barakat, G., Yassine, A., et al: ‘Deterministic optimization and cost analysis of hybrid PV/wind/battery/diesel power system’, Int. J. Renew. Energy Res., 2012, 2, (4), pp. 686696.
    13. 13)
      • 14. Qasim, M., Khadkikar, V.: ‘Application of artificial neural networks for shunt active power filter control’, IEEE Trans. Ind. Inf., 2014, 10, (3), pp. 17651774.
    14. 14)
      • 4. Mikkili, S., Panda, A.K.: ‘Simulation and real time implementation of SAPF id–iq control strategy for mitigation of harmonics with different membership functions’, IET Power Electron., 2012, 5, (9), pp. 18561872.
    15. 15)
      • 13. Lin, C.J., Chen, C.H., Lee, C.Y.: ‘TSK-type quantum neural fuzzy network for temperature control’, Int. Math. Forum, 2006, 1, (18), pp. 853866.
    16. 16)
      • 22. Niu, B., Zhu, Y., He, X., et al: ‘A multiswarm optimizer based fuzzy modeling approach for dynamic systems processing’, Neurocomputing, 2008, 71, pp. 14361448.
    17. 17)
      • 6. Singh, B., Singhal, V.: ‘Improved control of three phase active filters using genetic algorithms’. Seventh Int. Conf. on Power Electronics and Drive Systems, 2007. PEDS'07, 2007, pp. 16891694.
    18. 18)
      • 15. Lee, C., Hong, J., Lin, Y., et al: ‘Type-2 fuzzy neural network systems and learning’, Int. J. Comput. Cognition, 2003, 1, (4), pp. 7990.
    19. 19)
      • 16. Wang, C., Cheng, C., Lee, T.: ‘Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2004, 34, (3), pp. 14621477.
    20. 20)
      • 5. El Khetab, A., Rahim, N.A., Selvaraj, J., et al: ‘Fuzzy-logic-controller-based SEPIC converter for maximum power point tracking’, IEEE Trans. Ind. Electron., 2014, 50, (4), pp. 23492358.
    21. 21)
      • 11. Zhang, X., Wang, P., Yan, M., et al: ‘Discrete-time sliding mode control of nonlinear time-delay systems based on T-S fuzzy model’. Int. Conf. on Intelligent Control and Information Processing, 2010, pp. 304309.
    22. 22)
      • 27. Martínez-Marroquín, R., Castillo, O., Soria, J.: ‘Particle swarm optimization applied to the design of type-1 and type-2 fuzzy controllers for an autonomous mobile robot’, in Melin, P., Kacprzyk, J., Pedrycz, W. (Eds.): ‘Bio-inspired hybrid intelligent systems for image analysis and pattern recognition’, Studies in Computational Intelligence 256 (Springer, Berlin, Germany, 2009), pp. 247262.
    23. 23)
      • 24. Lin, C., Hong, S.: ‘The design of neuro-fuzzy networks using particle swarm optimisation and recursive singular value decomposition’, Neurocomputing, 2007, 71, pp. 271310.
    24. 24)
      • 23. Mukherjee, V., Ghoshal, S.P.: ‘Intelligent particle swarm optimized fuzzy PID controller for AVR system’, Electr. Power Syst. Res., 2007, 77, pp. 16891698.
    25. 25)
      • 17. Pratihar, D.K., Deb, K., Ghosh, A.: ‘A genetic-fuzzy approach for mobile robot navigation among moving obstacles’, Int. J. Approx. Reason., 1999, 20, (2), pp. 145172.
    26. 26)
      • 2. Lee, Y.D., Chen, C.S., Hsu, C.T., et al: ‘Harmonic analysis for the distribution system with dispersed generation systems’. Int. Conf. on Power System Technology, 2006, PowerCon 2006, 2006, pp. 16.
    27. 27)
      • 20. Fang, G., Kwok, N.M., Ha, Q.: ‘Automatic fuzzy membership function tuning using the particle swarm optimization’. Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, PACIIA '08, 2008, vol. 2, pp. 324328.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0440
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address