access icon free Dynamic power flow algorithm considering frequency regulation of wind power generators

Power flow calculation is a basic tool for power systems operation and control. Considering static frequency regulation characteristics of power systems, dynamic power flow (DPF) gives more precise results of system operation with frequency deviation than conventional power flow. The increasing penetration of wind energy into power grid makes it necessary to take wind power into consideration in DPF calculation. The operational traits and frequency regulation characteristics of major types of wind turbines are discussed, including fixed speed wind turbines and variable speed wind turbines with integrated control strategy combining over-speed control and droop control. With the primary frequency regulation characteristics of wind turbines, a simplified DPF algorithm is proposed in this study for power systems integrating wind power generation. The IEEE 30-bus system is modified to verify the proposed method considering different levels of wind power penetration.

Inspec keywords: power grids; power generation control; load flow; velocity control; wind turbines; wind power; frequency control

Other keywords: dynamic power flow algorithm; DPF calculation; droop control; static frequency regulation characteristics; power grid; power systems operation; fixed speed wind turbines; frequency deviation; integrated control strategy; wind energy penetration; variable speed wind turbines; wind power generators; wind power; over-speed control; power systems control; IEEE 30-bus system

Subjects: Power system control; Velocity, acceleration and rotation control; Control of electric power systems; Frequency control; Energy resources; Wind power plants

References

    1. 1)
      • 20. Yang, S.Y., Wu, Y.K., Lin, H.J., et al: ‘Integrated mechanical and electrical DFIG wind turbine model development’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 20902102.
    2. 2)
      • 8. Hong, Y.Y., Lin, F.J., Yu, T.H.: ‘Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads’, IET Renew. Power Gener., 2016, 10, (2), pp. 221227.
    3. 3)
      • 11. Zou, Y., Elbuluk, M.E., Sozer, Y.: ‘Stability analysis of Maximum Power Point Tracking (MPPT) Method in Wind Power Systems’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 11291136.
    4. 4)
      • 6. Xie, N., Torelli, F., Bompard, E., et al: ‘Dynamic computing paradigm for comprehensive power flow analysis’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 832842.
    5. 5)
      • 10. Van de Vyver, J., De Kooning, J.D.M., Meersman, B., et al: ‘Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11291138.
    6. 6)
      • 5. Wall, P., Terzija, V.: ‘Simultaneous estimation of the time of disturbance and inertia in power systems’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 20182031.
    7. 7)
      • 26. Ruttledge, L., Flynn, D.: ‘Emulated inertial response from wind turbines: gain scheduling and resource coordination’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 37473755.
    8. 8)
      • 4. De Almeida, R.G., Pecas Lopes, J.A.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950.
    9. 9)
      • 12. Doherty, R., Mullane, A., Nolan, G., et al: ‘An assessment of the impact of wind generation on system frequency control’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 452460.
    10. 10)
      • 22. Aik, D.L.H.: ‘A general-order system frequency response model incorporating load shedding: analytic modeling and applications’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 709717.
    11. 11)
      • 21. Guo, Y., Hosseini, S.H., Tang, C.Y., et al: ‘An approximate wind turbine control system model for wind farm power control’, I EEE Trans. Sustain. Energy, 2013, 4, (1), pp. 262274.
    12. 12)
      • 17. Tarnowski, G.C., Kjar, P.C., Sorensen, P.E., et al: ‘Variable speed wind turbines capability for temporary over-production’. IEEE Power and Energy Society General Meeting, Calgary, Canada, July 2009, pp. 17.
    13. 13)
      • 27. Loukarakis, E., Margaris, I., Moutis, P.: ‘Frequency control support and participation methods provided by wind generation’. Electrical Power and Energy Conf. (EPEC), Montreal, Canada, October 2009, pp. 16.
    14. 14)
      • 16. Juelsgaard, M., Bendtsen, J., Wisniewski, R.: ‘Utilization of wind turbines for up-regulation of power grids’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 28512863.
    15. 15)
      • 30. Sigrist, L.: ‘A UFLS scheme for small isolated power systems using rate-of-change of frequency’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 21922193.
    16. 16)
      • 1. Bhattacharya, T., Umanand, L.: ‘Negative sequence compensation within fundamental positive sequence reference frame for a stiff micro-grid generation in a wind power system using slip ring induction machine’, IET Electr. Power Appl., 2009, 3, (6), pp. 520530.
    17. 17)
      • 13. Chang-Chien, L.R., Lin, W.T., Yin, Y.C.: ‘Enhancing frequency response control by DFIGs in the high wind penetrated power systems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 710718.
    18. 18)
      • 2. ‘Global Wind Energy Outlook’. Available at http://www.gwec.net, accessed 7 October 2010.
    19. 19)
      • 24. Li, C.G., Liu, Y.T., Zhang, H.X.: ‘Power system frequency response analysis based on the direct current load flow’, Proc. CSEE, 2009, 29, (34), pp. 3638.
    20. 20)
      • 15. Nian, H., Yi, X.: ‘Coordinated control strategy for doubly-fed induction generator with DC connection topology’, IET Renew. Power Gener., 2015, 9, (7), pp. 747756.
    21. 21)
      • 25. Morren, J., de Haan, S.W.H., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    22. 22)
      • 19. Huang, W.T., Yao, K.C.: ‘New network sensitivity-based approach for real-time complex power flow calculation’, IET Gener. Transm. Distrib., 2012, 6, (2), pp. 109120.
    23. 23)
      • 18. Li, Y., Luo, Y., Zhang, B.: ‘A modified Newton-Raphson power flow method considering wind power’. Power and Energy Engineering Conf. (APPEEC), Wuhan, China, March 2011, pp. 15.
    24. 24)
      • 14. Zhang, Z.S., Sun, Y.Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), pp. 3847.
    25. 25)
      • 9. Yu, H., Rosehart, W.D.: ‘An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18081817.
    26. 26)
      • 23. Li, C.G., Liu, Y.T., Zhang, H.X.: ‘Fast analysis of active power-frequency dynamics considering network influence’. IEEE Power and Energy Society General Meeting, San Diego, United States, July 2012, pp. 16.
    27. 27)
      • 31. Anderson, P.M., Mirheydar, M.: ‘A low-order system frequency response model’, IEEE Trans. Power Syst., 1990, 5, (3), pp. 720726.
    28. 28)
      • 3. Manjure, D.P., Mishra, Y., Brahma, S., et al: ‘Impact of wind power development on transmission planning at midwest ISO’, I EEE Trans. Sustain. Energy, 2012, 3, (4), pp. 845852.
    29. 29)
      • 29. Ding, L., Yin, S.Y., Wang, T.X.: ‘Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control’, Power Syst. Technol., 2015, 39, (9), pp. 23862391.
    30. 30)
      • 7. Montenegro, D., Ramos, G.A., Bacha, S.: ‘Multilevel A-Diakoptics for the dynamic power-flow simulation of hybrid power distribution systems’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 267276.
    31. 31)
      • 28. Cardenas, R., Pena, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27762798.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0358
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading