access icon free SS resonance analysis of complex power system incorporating wind power

This study aims to conduct the sub-synchronous (SS) resonance analysis of a multi-machine power system incorporating doubly fed induction generator (DFIG)- or permanent magnetic synchronous generator (PMSG)-based wind farm. The linearised equations involving the dynamics of steam turbine generator, wind farm, shunt capacitor, transmission line, and load are derived, and the detailed state matrix formation process pertinent to each component is presented. Taking the IEEE 16-machine-68-bus test system as example, the eigenvalue analysis along with participation factor is applied to investigate the impacts of the series compensation level of transmission line on the modal frequencies and damping ratios of two groups of oscillatory modes of interest: namely, the SS mode of the series-compensated transmission line and the shaft modes of the studied steam turbine generator before and after one of the un-studied steam turbine generators is replaced by the DFIG- or PMSG-based wind farm. Some useful conclusions and comments are drawn.

Inspec keywords: steam turbines; eigenvalues and eigenfunctions; asynchronous generators; wind power plants

Other keywords: transmission line; state matrix formation process; PMSG; eigenvalue analysis; subsynchronous resonance analysis; doubly fed induction generator; wind farm; SS resonance analysis; linearised equations; series-compensated transmission line; permanent magnetic synchronous generator; complex power system; IEEE 16-machine-68-bus test system; wind power; steam turbine generator; shunt capacitor; multimachine power system

Subjects: Asynchronous machines; Steam power stations and plants; Linear algebra (numerical analysis); Wind power plants

References

    1. 1)
      • 28. Chow, J.: ‘Cherry tree scientific software’. Power System Toolbox Version 2.0.. Available at e-mail: cherry@eagle.ca.
    2. 2)
      • 14. Fan, L., Miao, Z.: ‘Mitigating SSR using DFIG-based wind generation’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 349358.
    3. 3)
      • 6. Mohammadpour, H.A., Santi, E.: ‘Sub-synchronous resonance analysis in DFIG-based wind farms: definitions and problem identification – part I’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, September 2014, pp. 812819.
    4. 4)
      • 3. Padiyar, K.R.: ‘Analysis of subsynchronous resonance in power systems’ (Kluwer Academic Publisher, London, 1999).
    5. 5)
      • 19. Mohammadpour, H.A., Ghaderi, A., Santi, E.: ‘Analysis of sub-synchronous resonance in doubly-fed induction generator-based wind farms interfaced with gate – controlled series capacitor’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 19982011.
    6. 6)
      • 11. Su, J., Shi, L., Yao, L., et al: ‘A comparative sub-synchronous resonance analysis of grid-connected doubly fed induction generator based and permanent magnet synchronous generator based wind farms’, Electr. Power Compon. Syst., 2015, 43, (7), pp. 792809.
    7. 7)
      • 12. Wang, L., Xie, X., Jiang, Q., et al: ‘Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 27722779.
    8. 8)
      • 2. Anderson, P.M., Agrawal, B.L., Van Ness, J.E.: ‘Subsynchronous resonance in power systems’ (IEEE Press, New York, 1990).
    9. 9)
      • 21. Wu, M., Xie, L., Cheng, L., et al: ‘A study on the impact of wind farm spatial distribution on power system sub-synchronous oscillations’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 21542162.
    10. 10)
      • 18. Mohammadpour, H.A., Santi, E.: ‘Sub-synchronous resonance analysis in DFIG-based wind farms: mitigation methods – TCSC, GCSC, and DFIG controllers – part II’. Proc. Int. Conf. Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, September 2014, pp. 15501557.
    11. 11)
      • 1. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy systems’ (John Wiley & Sons, NJ, 2011).
    12. 12)
      • 25. Su, J.L., Shi, L.B., Yao, L.Z., et al: ‘Sub-synchronous resonance analysis of grid-connected DFIG-based wind farms’. Proc. Int. Conf. Power System Technology (POWERCON), Chengdu, October 2014, pp. 28122818.
    13. 13)
      • 27. Rogers, G.: ‘Power system oscillations’ (Kluwer Academic Publishers, Boston, 2000).
    14. 14)
      • 9. Zhu, C., Hu, M., Wu, Z.: ‘Parameters impact on the performance of a double-fed induction generator-based wind turbine for subsynchronous resonance control’, IET Renew. Power Gener., 2012, 6, (2), pp. 9298.
    15. 15)
      • 10. Fan, L., Kavasseri, R., Miao, Z.L., et al: ‘Modeling of DFIG-based wind farms for SSR analysis’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 20732082.
    16. 16)
      • 26. Kang, L., Shi, L.B., Ni, Y.X., et al: ‘Small signal stability analysis with penetration of grid-connected wind farm of PMSG type’. Proc. Int. Conf. Advanced Power System Automation and Protection (APAP), Beijing, October 2011, pp. 147151.
    17. 17)
      • 24. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (The Iowa State University Press, Iowa, USA, 1977).
    18. 18)
      • 15. Leon, A.E., Solsona, J.A.: ‘Sub-synchronous interaction damping control for DFIG wind turbines’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 419428.
    19. 19)
      • 22. Liu, H., Xie, X., Zhang, C., et al: ‘Quantitative SSR analysis of series-compensated DFIG-based wind farms using aggregated RLC circuit model’, IEEE Trans. Power Syst., 2016, p. 1.
    20. 20)
      • 4. Adams, J., Carter, C., Huang, S.-H.: ‘ERCOT experience with sub-synchronous control interaction and proposed remediation’. Proc. Int. Conf. IEEE PES Transmission and Distribution Conf. and Exposition (T&D), Orlando, FL, May 2012, pp. 15.
    21. 21)
      • 29. IEEE Subsynchronous Resonance Working Group: ‘Terms, definitions and symbols for sub-synchronous oscillations’, IEEE Trans. Power Appl. Syst., 1985, 104, (6), pp. 13261334.
    22. 22)
      • 5. Lawrence, C., Gross, J.P.: ‘Sub-synchronous grid conditions: new event, new problem, and new solutions’. Proc. Int. Conf. Western Protective Relay Conf., Spokane, Washington, 2010, pp. 119.
    23. 23)
      • 16. Xie, H., Li, B., Heyman, C., et al: ‘Subsynchronous resonance characteristics in presence of doubly-fed induction generator and series compensation and mitigation of subsynchronous resonance by proper control of series capacitor’, IET Renew. Power Gener., 2014, 8, (4), pp. 411421.
    24. 24)
      • 23. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    25. 25)
      • 17. Huang, P.H., El Moursi, M.S., Xiao, W., et al: ‘Subsynchronous resonance mitigation for series-compensated DFIG-based wind farm by using two-degree-of-freedom control strategy’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 14421454.
    26. 26)
      • 13. Suriyaarachchi, D.H.R., Annakkage, U.D., Karawita, C., et al: ‘A procedure to study sub-synchronous interactions in wind integrated power systems’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 377384.
    27. 27)
      • 7. Mohammadpour, H.A., Santi, E.: ‘Analysis of sub-synchronous resonance (SSR) in doubly-fed induction generator (DFIG)-based wind farms’, Synth. Lect. Power Electron., Morgan & Claypool, 2015, 5, (3), pp. 164.
    28. 28)
      • 20. Mohammadpour, H.A., Santi, E.: ‘Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10221033.
    29. 29)
      • 8. Fan, L., Zhu, C., Miao, Z., et al: ‘Modal analysis of a DFIG-based wind farm interfaced with a series compensated network’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 10101020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0289
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading