http://iet.metastore.ingenta.com
1887

Using SCADA data for wind turbine condition monitoring – a review

Using SCADA data for wind turbine condition monitoring – a review

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The ever increasing size of wind turbines and the move to build them offshore have accelerated the need for optimised maintenance strategies in order to reduce operating costs. Predictive maintenance requires detailed information on the condition of turbines. Due to the high costs of dedicated condition monitoring systems based on mainly vibration measurements, the use of data from the turbine supervisory control and data acquisition (SCADA) system is appealing. This review discusses recent research using SCADA data for failure detection and condition monitoring (CM), focussing on approaches which have already proved their ability to detect anomalies in data from real turbines. Approaches are categorised as (i) trending, (ii) clustering, (iii) normal behaviour modelling, (iv) damage modelling and (v) assessment of alarms and expert systems. Potential for future research on the use of SCADA data for advanced turbine CM is discussed.

References

    1. 1)
      • 1. Global Wind Energy Council: ‘Global Wind Statistics 2015’. Available at http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR_corrected.pdf, accessed 29 March 2016.
    2. 2)
      • 2. Tavner, P.: ‘Offshore wind turbines: reliability, availability and maintenance’ (The Institution of Engineering and Technology, London, 2012).
    3. 3)
      • 3. Milborrow, D.: ‘The tide turns on offshore maintenance costs’. Available at http://www.windpoweroffshore.com/article/1314299/tide-turns-offshore-maintenance-costs, accessed 29 March 2016.
    4. 4)
      • 4. Yang, W., Court, R., Jiang, J.: ‘Wind turbine condition monitoring by the approach of SCADA data analysis’, Renew. Energy, 2013, 53, (5), pp. 365376.
    5. 5)
      • 5. Yang, W., Tavner, P.J., Crabtree, C.J., et al: ‘Wind turbine condition monitoring: technical and commercial challenges’, Wind Energy, 2014, 17, (5), pp. 673693.
    6. 6)
      • 6. Hameed, Z., Hong, Y.S., Cho, Y.M., et al: ‘Condition monitoring and fault detection of wind turbines and related algorithms: A review’, Renew. Sustain. Energy Rev., 2009, 13, (1), pp. 139.
    7. 7)
      • 7. García Márquez, F.P., Tobias, A.M., Pinar Pérez, J.M., et al: ‘Condition monitoring of wind turbines: Techniques and methods’, Renew. Energy, 2012, 46, pp. 169178.
    8. 8)
      • 8. Purarjomandlangrudi, A., Nourbakhsh, G., Esmalifalak, M., et al: ‘Fault detection in wind turbine: a systematic literature review’, Wind Eng., 2013, 37, (5), pp. 535548.
    9. 9)
      • 9. Tchakoua, P., Wamkeue, R., Ouhrouche, M., et al: ‘Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges’, Energies, 2014, 7, (4), pp. 25952630.
    10. 10)
      • 10. Qiao, W., Lu, D.: ‘A survey on wind turbine condition monitoring and fault diagnosis – part i: components and subsystems’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 65366545.
    11. 11)
      • 11. Qiao, W., Lu, D.: ‘A survey on wind turbine condition monitoring and fault diagnosis – part ii: signals and signal processing methods’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 65466557.
    12. 12)
      • 12. Hahn, B., Durstewitz, M., Rohrig, K.: ‘Reliability of wind turbines – experience of 15 years with 1500 WTs’, in Peinke, J., Schaumann, P., Barth, S. (Ed.) ‘Wind energy’ (Springer, 2007), pp. 329332.
    13. 13)
      • 13. Ribrant, J., Bertling, L.M.: ‘Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 167173.
    14. 14)
      • 14. Tavner, P.J., Xiang, J., Spinato, F.: ‘Reliability analysis for wind turbines’, Wind Energy, 2007, 10, (1), pp. 118.
    15. 15)
      • 15. Spinato, F., Tavner, P.J., van Bussel, G.J.W., et al: ‘Reliability of wind turbine subassemblies’, IET Renew. Power Gener., 2009, 3, (4), pp. 115.
    16. 16)
      • 16. Pinar Pérez, J.M., García Márquez, F.P., Tobias, A., et al: ‘Wind turbine reliability analysis’, Renew. Sustain. Energy Rev., 2013, 23, pp. 463472.
    17. 17)
      • 17. Feng, Y., Tavner, P.J., Long, H.: ‘Early experiences with UK round 1 offshore wind farms’, Proc. Inst. Civ. Eng. – Energy, 2010, 163, (4), pp. 167181.
    18. 18)
      • 18. Wilkinson, M., Harman, K.: ‘Measuring wind turbine reliability, results of the reliawind project’. EWEA Annual Conf. 2011, 2011.
    19. 19)
      • 19. Sheng, S.: ‘Report on wind turbine subsystem reliability – a survey of various databases’ (National Renew. Energy Lab, 2013).
    20. 20)
      • 20. Carroll, J., McDonald, A., McMillan, D.: ‘Reliability comparison of wind turbines with DFIG and PMG drive trains’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 663670.
    21. 21)
      • 21. Carroll, J., McDonald, A., McMillan, D.: ‘Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines’, Wind Energy, 2015, 17, (6), pp. 11071119.
    22. 22)
      • 22. Godwin, J.L., Matthews, P.: ‘Classification and detection of wind turbine pitch faults through SCADA data analysis’, Int. J. Progn. Heal. Manag., 2013, 4, pp. 111.
    23. 23)
      • 23. Garcia, M.C., Sanz-Bobi, M.A., del Pico, J.: ‘SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a windturbine gearbox’, Comput. Ind., 2006, 57, (6), pp. 552568.
    24. 24)
      • 24. Zaher, A., McArthur, S.D.J., Infield, D.G., et al: ‘Online wind turbine fault detection through automated SCADA data analysis’, Wind Energy, 2009, 12, (6), pp. 574593.
    25. 25)
      • 25. Catmull, S.: ‘Self-organising map based condition monitoring of wind turbines’. EWEA Annual Conf. 2011, 2011.
    26. 26)
      • 26. Watson, S.J., Kennedy, I., Gray, C.S.: ‘The use of physics of failure modelling in wind turbine condition monitoring’. EWEA Annual Conf. 2011, 2011, pp. 309312.
    27. 27)
      • 27. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description’, Appl. Soft Comput., 2013, 13, (1), pp. 259270.
    28. 28)
      • 28. Wilkinson, M., Harman, K., van Delft, T., et al: ‘Comparison of methods for wind turbine condition monitoring with SCADA data’, IET Renew. Power Gener., 2014, 8, (4), pp. 390397.
    29. 29)
      • 29. Sun, P., Li, J., Wang, C., et al: ‘A generalized model for wind turbine anomaly identification based on SCADA data’, Appl. Energy, 2016, 168, pp. 550567.
    30. 30)
      • 30. Cross, P., Ma, X.: ‘Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines’, Int. J. Autom. Comput., 2015, 12, (1), pp. 2534.
    31. 31)
      • 31. Feng, Y., Qiu, Y., Crabtree, C.J., et al: ‘Monitoring wind turbine gearboxes’, Wind Energy, 2013, 16, (5), pp. 728740.
    32. 32)
      • 32. Crabtree, C.J., Zappalá, D., Tavner, P.J.: ‘Survey of commercially available condition monitoring systems for wind turbines’ (Durham University School of Engineering and Computing Sciences and the SUPERGEN Wind Energy Technologies Consortium, 2014).
    33. 33)
      • 33. Wiggelinkhuizen, E., Verbruggen, T., Braam, H., et al: ‘Assessment of condition monitoring techniques for offshore wind farms’, J. Sol. Energy Eng., 2008, 130, (3), pp. 031004-1031004-9.
    34. 34)
      • 34. Kim, K., Parthasarathy, G., Uluyol, O., et al: ‘Use of SCADA data for failure detection in wind turbines’. ASME 5th Int. Conf. Energy Sustain., 2011, pp. 20712079.
    35. 35)
      • 35. Feng, Y., Qiu, Y., Crabtree, C., et al: ‘Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox’. EWEA Annual Conf. 2011, 2011.
    36. 36)
      • 36. Astolfi, D., Castellani, F., Terzi, L.: ‘Fault prevention and diagnosis through scada temperature data analysis of an onshore wind farm’, Diagnostyka, 2014, 15, (2), pp. 7178.
    37. 37)
      • 37. Kusiak, A., Zhang, Z.: ‘Analysis of wind turbine vibrations based on SCADA data’, J. Sol. Energy Eng., 2010, 132, (3), pp. 031008-1031008-12.
    38. 38)
      • 38. Zhang, Z., Kusiak, A.: ‘Monitoring wind turbine vibration based on SCADA data’, J. Sol. Energy Eng., 2012, 134, (2), pp. 021004-1021004-12.
    39. 39)
      • 39. Garlick, W.G., Dixon, R., Watson, S.J.: ‘A model-based approach to wind turbine condition monitoring using SCADA data’. 20th Int. Conf. System Engineering, 2009.
    40. 40)
      • 40. Schlechtingen, M., Santos, I.F.: ‘Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection’, Mech. Syst. Signal Processing, 2010, 25, pp. 18491875.
    41. 41)
      • 41. Du, H.: ‘Data mining techniques and applications: an introduction’ (Cengage Learning EMEA, 2010).
    42. 42)
      • 42. Brandão, R.F.M., Carvalho, J.A.B., Barbosa, F.P.M.: ‘Neural networks for condition monitoring of wind turbines’. Int. Symp. Modern Electric Power System Wroclaw, Poland, 2010.
    43. 43)
      • 43. Brandão, R.F.M., Carvalho, J.A.B.: ‘Intelligent system for fault detection in wind turbines gearbox’. PowerTech Eindhoven 2015, 2015.
    44. 44)
      • 44. Kusiak, A., Verma, A.: ‘Analyzing bearing faults in wind turbines: a data-mining approach’, Renew. Energy, 2012, 48, pp. 110116.
    45. 45)
      • 45. Zhang, Z.-Y., Wang, K.-S.: ‘Wind turbine fault detection based on SCADA data analysis using ANN’, Adv. Manuf., 2014, 2, (1), pp. 7078.
    46. 46)
      • 46. Li, J., Lei, X., Li, H., et al: ‘Normal behavior models for the condition assessment of wind turbine generator systems’, Electr. Power Compon. Syst., 2014, 42, (11), pp. 12011212.
    47. 47)
      • 47. Bangalore, P., Tjernberg, L.B.: ‘An artificial neural network approach for early fault detection of gearbox bearings’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 980987.
    48. 48)
      • 48. Bangalore, P., Tjernberg, L.B.: ‘An approach for self evolving neural network based algorithm for fault prognosis in wind turbine’. 2013 IEEE Grenoble Conf., 2013.
    49. 49)
      • 49. Bangalore, P., Tjernberg, L.B.: ‘Self evolving neural network based algorithm for fault prognosis in wind turbines: A case study’. 2014 Int. Conf. Probabilistic Methods Application to Power Syst. (PMAPS), 2014.
    50. 50)
      • 50. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: ‘Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence’ (Prentice Hall, 1997).
    51. 51)
      • 51. Schlechtingen, M., Santos, I.F.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples’, Appl. Soft Comput., 2014, 14, (1), pp. 447460.
    52. 52)
      • 52. Wang, Y., Infield, D.: ‘Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring’, IET Renew. Power Gener., 2012, 7, (4), pp. 350358.
    53. 53)
      • 53. Guo, P.: ‘Wind turbine generator bearing condition monitoring with NEST method’. Proc. 2012 24th Chinese Control Decision Conf. CCDC 2012, 2012, pp. 235239.
    54. 54)
      • 54. Butler, S., O'Connor, F., Farren, D., et al: ‘A feasibility study into prognostics for the main bearing of a wind turbine’. Proc. IEEE Int. Conf. Control Application, 2012, pp. 10921097.
    55. 55)
      • 55. Gray, C.S., Watson, S.J.: ‘Physics of Failure approach to wind turbine condition based maintenance’, Wind Energy, 2010, 13, (5), pp. 395405.
    56. 56)
      • 56. Breteler, D., Kaidis, C., Loendersloot, R.: ‘Physics based methodology for wind turbine failure detection, diagnostics & prognostics’. EWEA 2015 Annual Event, 2015.
    57. 57)
      • 57. Qiu, Y., Zhang, W., Cao, M., et al: ‘An electro-thermal analysis of a variable-speed doubly-fed induction generator in a wind turbine’, Energies, 2015, 8, (5), pp. 33863402.
    58. 58)
      • 58. Qiu, Y., Feng, Y., Sun, J., et al: ‘Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data’. IET Renew. Power Gener., 2016, 10, (5), pp. 18.
    59. 59)
      • 59. Borchersen, A.B., Kinnaert, M.: ‘Model-based fault detection for generator cooling system in wind turbines using SCADA data’, Wind Energy, 2016, 19, (4), pp. 593606.
    60. 60)
      • 60. Qiu, Y., Feng, Y., Tavner, P., et al: ‘Wind turbine SCADA alarm analysis for improving reliability’, Wind Energy, 2012, 15, (8), pp. 951966.
    61. 61)
      • 61. Chen, B., Qiu, Y.N., Feng, Y., et al: ‘Wind turbine SCADA alarm pattern recognition’. IET Conf. Renewable Power Generation (RPG 2011), 2011, pp. 363368.
    62. 62)
      • 62. Chen, B., Tavner, P., Feng, Y., et al: ‘Bayesian network for wind turbine fault diagnosis’. EWEA 2012 Copenhagen, 2012.
    63. 63)
      • 63. Kusiak, A., Li, W.: ‘The prediction and diagnosis of wind turbine faults’, Renew. Energy, 2011, 36, (1), pp. 1623.
    64. 64)
      • 64. Chen, B., Matthews, P.C., Tavner, P.J.: ‘Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS’, Expert Syst. Appl., 2013, 40, (17), pp. 68636876.
    65. 65)
      • 65. Chen, B., Matthews, P.C., Tavner, P.J.: ‘Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition’, IET Renew. Power Gener., 2015, 9, (5), pp. 503513.
    66. 66)
      • 66. Li, H., Hu, Y.G., Yang, C., et al: ‘An improved fuzzy synthetic condition assessment of a wind turbine generator system’, Int. J. Electr. Power Energy Syst., 2013, 45, (1), pp. 468476.
    67. 67)
      • 67. De Andrade Vieira, R.J., Sanz-Bobi, M.A.: ‘Failure risk indicators for a maintenance model based on observable life of industrial components with an application to wind turbines’, IEEE Trans. Reliab., 2013, 62, (3), pp. 569582.
    68. 68)
      • 68. Gray, C.S., Koitz, R., Psutka, S., et al: ‘An abductive diagnosis and modeling concept for wind power plants’, IFAC-PapersOnLine, 2015, 48, (21), pp. 404409.
    69. 69)
      • 69. Kusiak, A., Zheng, H., Song, Z.: ‘Models for monitoring wind farm power’, Renew. Energy, 2009, 34, (3), pp. 583590.
    70. 70)
      • 70. Gill, S., Stephen, B., Galloway, S.: ‘Wind turbine condition assessment through power curve copula modeling’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 94101.
    71. 71)
      • 71. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Using data-mining approaches for wind turbine power curve monitoring: A comparative study’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 671679.
    72. 72)
      • 72. Papatheou, E., Dervilis, N., Maguire, A.E., et al: ‘Wind turbine structural health monitoring: a short investigation based on SCADA data’. EWSHM – 7th European Workshop Structural Health Monitoring, 2014.
    73. 73)
      • 73. Long, H., Wang, L., Zhang, Z., et al: ‘Data-driven wind turbine power generation performance monitoring’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 66276635.
    74. 74)
      • 74. Wächter, M., Lind, P.G., Hernandez, I.H., et al: ‘Efficient load and power monitoring by stochastic methods’. EWEA 2015 Annual Event, 2015.
    75. 75)
      • 75. Lydia, M., Kumar, S.S., Selvakumar, A.I., et al: ‘A comprehensive review on wind turbine power curve modeling techniques’, Renew. Sustain. Energy Rev., 2014, 30, pp. 452460.
    76. 76)
      • 76. Tracht, K., Goch, G., Schuh, P., et al: ‘Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply’, CIRP Ann. – Manuf. Technol., 2013, 62, (1), pp. 127130.
    77. 77)
      • 77. Obdam, T.S., Rademakers, L.W.M.M., Braam, H.: ‘Flight leader concept for wind farm load counting: offshore evaluation’, Wind Eng., 2010, 34, (1), pp. 109122.
    78. 78)
      • 78. Smolka, U., Cheng, P.W.: ‘On the design of measurement campaigns for fatigue life monitoring of offshore wind turbines’. Twenty-third Int. Offshore Polar Engineering Conf., 2013, vol. 9, pp. 408413.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0248
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0248
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address