Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design guidelines for MPC-based frequency regulation for islanded microgrids with storage, voltage, and ramping constraints

This study addresses the frequency regulation for a microgrid under islanded mode with variable renewables. Due to the structure and parameters of microgrids, the frequency of the system and the voltages on the buses are coupled. Furthermore, to smooth out the fast fluctuations of renewables, the controllability of components are quantified accurately. In this study, some critical and realistic considerations are identified and modelled, and the guidelines for battery energy storage system (BESS) sizing are thus obtained. First, the frequency and voltage regulation loops are coordinated by a non-linear model predictive control (MPC) controller, and the controllable resources are sequentially dispatched. Second, the dynamic model for evaluating the state of charge (SOC) of BESS under a fast response is introduced. Finally, general guidelines of the required energy capacity of BESS and the length of MPC control horizons are quantified by deriving the process of the responding disturbances. Ramping rates and response time delays of controllable resources are involved in the mathematical analysis. The simulation results show that the effectiveness of the proposed MPC controller and design guidelines can be generalised for microgrids in islanded mode with two kinds of controllable operating resources, which are represented by diesel generators and BESS.

References

    1. 1)
      • 32. Gandolfo, D., Brandão, A., Patiño, D., et al: ‘Dynamic model of lithium polymer battery – load resistor method for electric parameters identification’, J. Energy Inst., 2015, 88, (4), pp. 470479.
    2. 2)
      • 29. Simões, M.G., P., B., Chakraborty, S., Uriarte, C.: ‘Electrical model development and validation for distributed resources’. Technical Report, NREL/SR-581-41109, 2007.
    3. 3)
      • 13. Bergen, A.R., Vittal, V.: ‘Power systems analysis’ (Prentice Hall, 2000).
    4. 4)
      • 11. Eghtedarpour, N., Farjah, E.: ‘Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid’, IET Renew. Power Gener., 2014, 8, (1), pp. 4557.
    5. 5)
      • 35. Qin, Z., Hou, Y., Lu, E., et al: ‘Solving long time-horizon dynamic optimal power flow of large-scale power grids with direct solution method’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 895906.
    6. 6)
      • 26. Petzl, M., Danzer, M.A.: ‘Advancements in OCV measurement and analysis for lithium-ion batteries’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 675681.
    7. 7)
      • 8. Jiang, L., Chi, Y., Qin, H., et al: ‘Wind energy in China’, IEEE Power Energy Mag., 2011, 9, (6), pp. 3646.
    8. 8)
      • 21. Cuffe, P., Keane, A.: ‘Voltage responsive distribution networks: comparing autonomous and centralized solutions’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 22342242.
    9. 9)
      • 28. ‘Distributed PV Monitoring and Feeder Analysis-EPRI’ Available at ‘http://dpv.epri.com/measurement_data.html’, accessed 1 January 2016.
    10. 10)
      • 24. Pahasa, J., Ngamroo, I.: ‘PHEVs bidirectional charging/discharging and SOC control for microgrid frequency stabilization using multiple MPC’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 526533.
    11. 11)
      • 31. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    12. 12)
      • 7. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
    13. 13)
      • 6. Mao, Y., Liu, F., Mei, S.: ‘On the topological characteristics of power grids with distributed generation’. Control Conf. (CCC), 2010 29th Chinese, 2010.
    14. 14)
      • 15. Balaguer, I.J., Qin, L., Shuitao, Y., et al: ‘Control for grid-connected and intentional islanding operations of distributed power generation’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 147157.
    15. 15)
      • 16. Ako, M., Hara, R., Kita, H., et al: ‘A method for balancing the supply and demand in an isolated system consisting of voltage control type inverters in friends’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 10981105.
    16. 16)
      • 30. Ulbig, A., Andersson, G.: ‘On operational flexibility in power systems’. IEEE Power and Energy Society General Meeting, CA, USA, 2012, pp. 18.
    17. 17)
      • 18. Ashabani, S.M., Mohamed, Y.A.R.I.: ‘General interface for power management of micro-grids using nonlinear cooperative droop control’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 29292941.
    18. 18)
      • 4. Vaccaro, A., Popov, M., Villacci, D., et al: ‘An integrated framework for smart microgrids modeling, monitoring, control, communication, and verification’, Proc. IEEE, 2011, 99, (1), pp. 119132.
    19. 19)
      • 33. Taesic, K., Wei, Q.: ‘A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 11721180.
    20. 20)
      • 3. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag.., 2010, 8, (1), pp. 1828.
    21. 21)
      • 22. Zhu, B., Tazvinga, H., Xia, X.H.: ‘Switched model predictive control for energy dispatching of a photovoltaic-diesel-battery hybrid power system’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 12291236.
    22. 22)
      • 23. Amin, R.T., Rohman, A.S., et al: ‘Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 19922002.
    23. 23)
      • 9. Varaiya, P.P., Wu, F.F., Bialek, J.W.: ‘Smart operation of smart grid: risk-limiting dispatch’, Proc. IEEE, 2011, 99, (1), pp. 4057.
    24. 24)
      • 34. ‘PV operating data’, NREL. Available at ‘http://dpv.epri.com/measurement_data.html’, accessed 1 January 2016.
    25. 25)
      • 1. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    26. 26)
      • 5. Huang, A.Q., Crow, M.L., Heydt, G.T., et al: ‘The future renewable electric energy elivery and management (Freedm) system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
    27. 27)
      • 20. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    28. 28)
      • 17. Krommydas, K.F., Alexandridis, A.T.: ‘Modular control design and stability analysis of isolated PV-source/battery-storage distributed generation systems’, IEEE Trans. Emerg. Sel. Top. Circuits Syst., 2015, PP, (99), pp. 111.
    29. 29)
      • 19. Alobeidli, K.A., Syed, M.H., El Moursi, M.S., et al: ‘Novel coordinated voltage control for hybrid micro-grid with islanding capability’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11161127.
    30. 30)
      • 2. Arboleya, P., Gonzalez-Moran, C., Coto, M., et al: ‘Efficient energy management in smart micro-grids: zero grid impact buildings’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 10551063.
    31. 31)
      • 27. Manwell, J.F., McGowan, J.G.: ‘Lead acid battery storage model for hybrid energy systems’, Sol. Energy, 1993, 50, (5), pp. 399405.
    32. 32)
      • 10. Grainger, B.M., Reed, G.F., Sparacino, A.R., et al: ‘Power electronics for grid-scale energy storage’, Proc. IEEE, 2014, 102, (6), pp. 10001013.
    33. 33)
      • 12. Boicea, V.A.: ‘Energy storage technologies: the past and the present’, Proc. IEEE, 2014, 102, (11), pp. 17771794.
    34. 34)
      • 25. Hu, J., He, Y., Xu, L., et al: ‘Predictive current control of grid-connected voltage source converters during’, IET Power Electron., 2010, 3, (5), pp. 690701.
    35. 35)
      • 14. Peas Lopes, J.A., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0242
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address