access icon free Design and experiment of a direct-drive wave energy converter using outer-PM linear tubular generator

Research on direct-drive wave energy converter linear generators has mostly focused on synchronous inner permanent magnet (PM) linear generators. In this study, an outer-PM tubular linear generator is designed to increase the power density and distance of relative movement. The motion equations of heaving buoys are derived on the basis of hydrodynamic theory. Two buoys are designed in accordance with the real wave condition in the Yellow Sea in China. The design process of the proposed generator is elucidated. Considering cogging force and voltage, the authors optimise the linear generator and determine the final parameters. The generator performance is evaluated using the finite element method. The integrated wave energy converter system consists of a linear generator, inner buoys, outer buoys, an electricity post-processor, and a communication component. The system is manufactured and placed in the Yellow Sea based on the design results. The measured voltage is highly consistent with the simulation data. All results show that the system is well suited for wave energy conversion.

Inspec keywords: finite element analysis; permanent magnet generators; wave power generation; hydrodynamics; synchronous generators; motor drives

Other keywords: Yellow Sea; China; motion equations; communication component; outer-PM linear tubular generator; finite element method; hydrodynamic theory; power density; cogging voltage; direct-drive wave energy converter; cogging force; synchronous inner permanent magnet linear generators; heaving buoys; electricity post-processor

Subjects: Finite element analysis; Drives; Synchronous machines; Wave power; Numerical approximation and analysis; Tidal and flow energy

References

    1. 1)
      • 9. Du, J., Liang, D., Xu, L., et al: ‘Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach’, IEEE Trans. Magn., 2010, 46, (6), pp. 13341337.
    2. 2)
      • 6. ‘Ocean Power Technologies (OPT) Inc, Recent News’. Available at http://www.oceanpowertechnologies.com.
    3. 3)
      • 8. Vining, J., Lipo, T.A., Venkataramanan, G.: ‘Experimental evaluation of a doubly-fed linear generator for ocean wave energy applications’. IEEE Energy Conversion Congress and Exposition: Energy Conversion Innovation for a Clean Energy Future, ECCE 2011, 2011, pp. 41154122.
    4. 4)
      • 7. Brekken, T.K.A., von Jouanne, A., Han, H.Y.: ‘Ocean wave energy overview and research at Oregon State University’. Proc. of IEEE Power Electronics and Machines in Wind Applications, PEMWA 2009.
    5. 5)
      • 17. Liu, C.Y., Yu, H.T., Hu, M.Q., et al: ‘Research on a permanent magnet tubular linear generator for direct drive wave energy conversion’, IET Renew. Power Gener., 8, (3), pp. 281288.
    6. 6)
      • 13. Hodgins, N., Keysan, O., McDonald, A.S., et al: ‘Design and testing of a linear generator for wave-energy applications’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 20942103.
    7. 7)
      • 16. Polinder, H., Mecrow, B.C., Jack, A.G., et al: ‘Conventional and TFPM linear generators for direct-drive wave energy conversion’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 260267.
    8. 8)
      • 11. Brooking, P.R.M., Mueller, M.A.: ‘Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters’, IEEE Proc. Gener. Transm. Distrib., 2005, 152, pp. 673681.
    9. 9)
      • 10. Calado, M.R.A., Godinho, P.M.C., Mariano, S.J.P.S.: ‘Design of a new linear generator for wave energy conversion based on analytical and numerical analyses’, J. Renew. Sustain. Energy, 2012, 4, (3), Article ID 033117.
    10. 10)
      • 4. ‘AWS, Archimedes Wave swing Ocean Power’. Available at http://www.awsocean.com/.
    11. 11)
      • 15. Eid, A.M., Suh, K.-Y., Choi, K.-J., et al: ‘A unique starting scheme of linear-engine tubular PM linear generator system using position feedback controlled PWM inverter’. 37th IEEE Power Electronics Specialists Conf., 2006, 18–22 June 2006, pp. 15.
    12. 12)
      • 1. Titah-Benbouzid, H., Benbouzid, M.: ‘Ocean wave energy extraction: up-to-date technologies review and evaluation’. 2014 Int. Electronics and Application Conf. and Exposition, PEAC 2014, pp. 338342.
    13. 13)
      • 18. Ko, K.-J., Jang, S.-M., Park, J.-H., et al: ‘Electromagnetic performance analysis of wind power generator with outer permanent magnet rotor based on turbine characteristics variation over nominal wind speed’, IEEE Trans. Magn., 2011, 47, (10), pp. 32923295.
    14. 14)
      • 21. Dai, Y.S.: ‘Potential flow theory of ship motions in waves in frequency and time domain’ (National Defend Industry Press, Beijing, 1998).
    15. 15)
      • 12. Yu, H., Liu, C., Yuan, B., et al: ‘A permanent magnet tubular linear generator for wave energy conversion’, J. Appl. Phys., 2012, 111, (7), Article ID 07A741.
    16. 16)
      • 19. Polikarpova, M., Ponomarev, P., Röyttä, P., et al: ‘Direct liquid cooling for an outer-rotor direct-drive permanent-magnet synchronous generator for wind farm applications’, IET Electr. Power Appl., 2015, 9, (8), pp. 523532.
    17. 17)
      • 5. Marei, M.I., Mokhtar, M., El-Sattar, A.A.: ‘MPPT strategy based on speed control for AWS-based wave energy conversion system’, Renewable Energy, 2015, 83, pp. 305317.
    18. 18)
      • 20. Falnes, J.: ‘Ocean waves and oscillating systems’ (Cambridge University Press, Cambridge, 2002).
    19. 19)
      • 3. Waters, R., Stålberg, M., Danielsson, O., et al: ‘Experimental results from sea trials of an offshore wave energy system’, Appl. Phys. Lett., 2007, 90, (3), ID 034105.
    20. 20)
      • 14. Delli Colli, V., Cancelliere, P., Marignetti, F., et al: ‘A tubular-generator drive for wave energy conversion’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 11521159.
    21. 21)
      • 2. Falcão, A.F.D.O.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0171
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading