access icon free Numeric optimal sensor configuration solutions for wind turbine gearbox based on structure analysis

The wind turbine gearbox, an important component of wind turbines, has a high failure rate and maintenance cost; therefore, several vibration sensors are installed to execute effective condition monitoring, fault diagnosis, and prediction, for reducing the downtime caused by faults. The sensor positions should directly and accurately reflect the gearbox operating status and provide several signals to the condition monitoring system. This article studies a gearbox model and the gear tooth faults, and builds a gearbox gear vibration model involving these faults. Using structure analysis, sensor configuration solutions rendering all the tooth faults detectable and all the faults isolable are, respectively, obtained, based on the gear vibration model. The sensor configuration solutions of the wind turbine gearbox can guide wind turbine gearbox sensor installation in practice and support common wind turbine gearbox sensor configuration solutions in theory.

Inspec keywords: condition monitoring; wind turbines; fault diagnosis; maintenance engineering; vibrations; gears

Other keywords: maintenance cost; structure analysis; vibration sensors; numeric optimal sensor configuration; fault diagnosis; condition monitoring system; high failure rate; gear vibration model; wind turbine gearbox sensor installation

Subjects: Wind power plants; Inspection and quality control

References

    1. 1)
      • 8. Gwendolyn, W., Linden, V.D., Abbas, E.N., et al: ‘Optimal sensor placement for health monitoring of civil structures’. American Control Conf. on O'Farrel Street, San Francisco, USA, 2011.
    2. 2)
      • 7. Sarrate, R., Puig, V., Escobet, T., et al: ‘Optimal sensor placement for model-based fault detection and isolation’. 2007 46th IEEE Conf. on Decision and Control, IEEE, 2007, pp. 25842589.
    3. 3)
      • 24. Teng, W., Wang, F., Zhang, K., et al: ‘Pitting fault detection of a wind turbine gearbox using empirical mode decomposition’, J. Mech. Eng., 2014, (1), pp. 1220.
    4. 4)
      • 19. Abouel-seoud, S.A., Dyab, E.S.: ‘Wind turbine planetary gearbox health diagnostic using varying-time meshing stiffness variation’, Int. J. Mod. Eng. Res., 2012, 2, (3), pp. 14401448.
    5. 5)
      • 23. Chen, H., Chen, P., Chen, W., et al: ‘Wind turbine gearbox fault diagnosis based on improved EEMD and Hilbert square demodulation’, Appl. Sci., 2017, 7, (2), pp. 128142.
    6. 6)
      • 9. Blanke, M., Kinneart, M., Lunze, J., et al: ‘Diagnosis and fault-tolerant control’ (Springer Verlag, Berlin, Heidelberg, 2003).
    7. 7)
      • 21. Jianyu, Z., Xinbo, L., Feibin, Z.: ‘Mesh stiffness deterioration characteristic of cracked gear’, Vib. Meas. Diagn., 2014, 34, (6), pp. 11241128.
    8. 8)
      • 3. Wenwen, D.: ‘Wind turbine vibration monitoring and fault diagnosis’ (East China University of Science and Technology, Shanghai Shi, China, 2011).
    9. 9)
      • 1. Sheng, S., Veers, P.: ‘Wind turbine drive train condition monitoring-an overview’. Machinery Failure Prevention Technology (MFPT): The Applied Systems Health Management Conf. 2011, Virginia Beach, USA, 2011.
    10. 10)
      • 10. Krysander, M.: ‘Design and analysis of diagnosis systems using structural methods’ (Linkopings Universitet, Sweden, Link ping, 2006).
    11. 11)
      • 18. XiaoYu, Y.: ‘Research on finite element analysis and test methods for gear transmission dynamics’ (Graduate University of Chinese Academy of Sciences, Beijing, 2005).
    12. 12)
      • 5. Frisk, E., Krysander, M.: ‘Sensor placement for maximum fault isolability’. 18th Int. Workshop on Principles of Diagnosis (DX-07), 2007, pp. 106113.
    13. 13)
      • 2. Xian, D.: ‘Wind turbines failure analysis based on vibration and load monitoring’ (North China Electric Power University, Beijing, China, 2012).
    14. 14)
      • 13. Guo, Y., Robert, G.P.: ‘Dynamic modeling and analysis of a planetary gear involving tooth wedging and bearing clearance nonlinearity’. Proc. of 2009 ASME, Galifornia, USA, 2009.
    15. 15)
      • 16. Qin, D., Tang, F.: ‘Study on dynamic characteristics of gear transmission system of wind turbine’. 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, 2011.
    16. 16)
      • 22. Dulmage, A.L., Mendelsohn, N.S.: ‘Coverings of bipartite graphs’, Can. J. Math., 1958, 10, pp. 517534.
    17. 17)
      • 4. Krysander, M., Frisk, E.: ‘Sensor placement for fault diagnosis’, IEEE Trans. Syst. Man Cybern. A: Syst. Hum., 2008, 38, (6), pp. 13981410.
    18. 18)
      • 6. Abid, S., Haffaf, H.: ‘Optimal sensors placement for failures detection and isolation’. Proc. of the Third Int. Conf. on Verification and Evaluation of Computer and Communication Systems. British Computer Society, 2009, pp. 110.
    19. 19)
      • 17. Kubur, M., Kahraman, A., Zini, D.M., et al: ‘Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment’, J. Vib. Acoust., 2004, 216, pp. 398406.
    20. 20)
      • 11. Frisk, E., Dustegor, D., Krysander, M., et al: ‘Improving fault isolability properties by structural analysis of faulty behavior models: application to the DAMADICS benchark problem’, Proceedings of Ifac Safeprocess, 2003.
    21. 21)
      • 20. Chunlei, A., Zhennan, H.: ‘Analysis of influence of pitting and spalling on torsional mesh stiffness of gears’, Vib. Meas. Diagn., 2008, 28, (4), pp. 354357.
    22. 22)
      • 12. Krysander, M., Nyberg, M.: ‘Fault diagnosis utilizing structural analysis’. Proc. of 2002 CCDDE, Norrköping, Sweden, 2002.
    23. 23)
      • 14. Zhang, C.: ‘Mechanical kinetics’ (Higher Education Press, Beijing, 2007), pp. 324439.
    24. 24)
      • 15. Morten, H., Michael, R.H., Morten, K.E.: ‘Modeling of wind turbine gearbox mounting’, Model. Identif. Control, 2011, 32, (4), pp. 141149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0157
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0157
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading