Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Feed-forward DC-bus control loop applied to a single-phase grid-connected PV system operating with PSO-based MPPT technique and active power-line conditioning

This study deals with a double-stage single-phase grid-connected photovoltaic (PV) system operating with an additional feed-forward control loop (FFCL). Owing to the PV array being constantly subjected to abrupt solar irradiance change, the DC-bus voltage varies and can interfere in adequate PV system operation. Therefore, an FFCL is proposed to improve the DC-bus voltage dynamic response, and reduce the settling time and overshoot. The FFCL acts on the generation of the inverter current reference, such that the dynamic behaviour of the current injected into the grid is also improved. Furthermore, the PV system performance is affected by problems associated with mismatching phenomena such as partial shading. This problem can be overcome using the maximum power point tracking (MPPT) technique based on particle swarm optimisation (PSO). The PSO-based MPPT is compared with the conventional perturb-and-observe MPPT technique, in order to highlight its effectiveness. In this study, the PV system also performs active power-line conditioning. Thereby, whereas the step-up DC–DC converter carries out the MPPT, the proper inverter current reference is computed to inject active power into the grid, as well as perform power-line conditioning. The performance and effectiveness of the PV system are evaluated through extensive experimental tests.

References

    1. 1)
      • 17. Angélico, B.A., Campanhol, L.B.G., Silva, S.A.O.: ‘Proportional–integral/proportional–integral-derivative tuning procedure of a single-phase shunt active power filter using Bode diagram’, IET Power Electron., 2014, 7, (10), pp. 26472659.
    2. 2)
      • 25. IEEE Std. 929-2000: ‘IEEE recommended practice for utility interface of photovoltaic (PV) systems’, 2000.
    3. 3)
      • 23. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. on Neural Networks, 1995, pp. 19421948.
    4. 4)
      • 9. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31953206.
    5. 5)
      • 10. Renaudineau, H., Donatantonio, F., Fontchastagner, J., et al: ‘A PSO-based global MPPT technique for distributed PV power generation’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10471058.
    6. 6)
      • 20. Fukuda, S., Yoda, T.: ‘A novel current-tracking method for active filters based on a sinusoidal internal model’, IEEE Trans. Ind. Appl., 2001, 37, (3), pp. 888895.
    7. 7)
      • 8. Ishaque, K., Salam, Z., Amiad, M., et al: ‘An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    8. 8)
      • 18. IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions, IEEE Std. 1459-2010, 2010.
    9. 9)
      • 14. Lal, V.N., Singh, S.N.: ‘Modified particle swarm optimisation-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability’, IET Renew. Power Gener., 2016, 10, (7), pp. 899907.
    10. 10)
      • 12. Liu, Y.H., Huang, S.C., Huang, J.W., et al: ‘A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10271035.
    11. 11)
      • 7. Miyatake, M., Veerachary, M., Toriumi, F., et al: ‘Maximum power point tracking of multiple photovoltaic arrays: a PSO approach’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (1), pp. 367380.
    12. 12)
      • 1. Brito, M.A.G., Sampaio, L.P., Melo, G.A., et al: ‘Three-phase tri-state buck–boost integrated inverter for solar applications’, IET Renew. Power Gener., 2015, 9, (6), pp. 557565.
    13. 13)
      • 13. Dezelak, K., Bracinik, P., Höger, M., et al: ‘Comparison between the particle swarm optimisation and differential evolution approaches for the optimal proportional–integral controllers design during photovoltaic power plants modelling’, IET Renew. Power Gener., 2016, 10, (4), pp. 522530.
    14. 14)
      • 4. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, (4), pp. 317328.
    15. 15)
      • 11. Oliveira, F.M., Silva, S.A.O., Durand, F.R., et al: ‘Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning’, IET Power Electron., 2016, 9, (6), pp. 11801191.
    16. 16)
      • 24. Chatterjee, A., Siarry, P.: ‘Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization’, Comput. Oper. Res., 2006, 33, (3), pp. 859871.
    17. 17)
      • 15. Reza Touse, S.M., Moradi, M.H., Basir, N.S., et al: ‘A function-based maximum power point tracking method for photovoltaic systems’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 21202128.
    18. 18)
      • 21. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44734482.
    19. 19)
      • 16. Wu, T.-F., Nien, H.-S., Shen, C.-L., et al: ‘A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration’, IEEE Trans. Ind. Appl., 2005, 41, (4), pp. 12921306.
    20. 20)
      • 5. Sundareswaran, K., Vigneshkumar, V., Palani, S.: ‘Development of a hybrid genetic algorithm/perturb and observe algorithm for maximum power point tracking in photovoltaic systems under non-uniform insolation’, IET Renew. Power Gener., 2015, 9, (7), pp. 757765.
    21. 21)
      • 6. Sundareswaran, K., Peddapati, S., Palani, S.: ‘Application of random search method for maximum power point tracking in partially shaded photovoltaic systems’, IET Renew. Power Gener., 2014, 8, (6), pp. 670678.
    22. 22)
      • 3. Brito, M.A.G., Sampaio, L.P., Galotto, L.Jr., et al: ‘Evaluation of the main MPPT techniques for photovoltaic applications’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11561167.
    23. 23)
      • 22. Bacon, V.D., Silva, S.A.O., Campanhol, L.B.G., et al: ‘Stability analysis and performance evaluation of a single-phase phase-locked loop algorithm using a non-autonomous adaptive filter’, IET Power Electron., 2014, 7, (8), pp. 20812092.
    24. 24)
      • 19. Rahman, S.A., Varma, R.K., Vanderheide, T.: ‘Generalised model of a photovoltaic panel’, IET Renew. Power Gener., 2014, 8, (3), pp. 217229.
    25. 25)
      • 2. Todeschini, G., Emanuel, A.E.: ‘Wind energy conversion systems as active filters: design and comparison of three control methods’, IET Renew. Power Gener., 2010, 4, (4), pp. 341353.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0120
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0120
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address