http://iet.metastore.ingenta.com
1887

Slide mode control of microgrid using small hydro driven single-phase SEIG integrated with solar PV array

Slide mode control of microgrid using small hydro driven single-phase SEIG integrated with solar PV array

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a susceptance theory-based sliding mode control (STSMC) algorithm for an improved power quality voltage and frequency control of a single-phase microgrid. The proposed microgrid includes a governor-free small hydro turbine-driven single-phase two winding self-excited induction generator (SEIG), a solar PV array and a battery energy storage system (BESS). The non-linear relationship among magnetising reactance, frequency and speed of SEIG along with random fluctuation in active power output of the solar PV array create the major challenge in frequency and voltage control of such renewable energy-based microgrid. The STSMC algorithm is found suitable to control frequency and voltage of such non-linear and complex system. In this proposed control, the system frequency control in dynamics and steady-state conditions and balance of power among various energy sources and BESS are achieved using the sliding mode control. The STSMC eliminates all possibilities of overshoot and undershoot problem in DC-link voltage of the VSC, which in turn reduces the required size of DC-link capacitor and BESS.

References

    1. 1)
      • S.S. Murthy , U.K. Kalla , G. Bhuvaneswari .
        1. Murthy, S.S., Kalla, U.K., Bhuvaneswari, G.: ‘A novel electronic controller implementation for voltage regulation of single phase self-excited induction generator’. Proc. IEEE Industry Applications Society Annual Meeting, 2010.
        . Proc. IEEE Industry Applications Society Annual Meeting
    2. 2)
      • R.-J. Wai , C.-Y. Lin .
        2. Wai, R.-J., Lin, C.-Y.: ‘Active low-frequency ripple control for clean-energy power-conditioning mechanism’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 37803792.
        . IEEE Trans. Ind. Electron. , 11 , 3780 - 3792
    3. 3)
      • R.-J. Wai , C.-Y. Lin .
        3. Wai, R.-J., Lin, C.-Y.: ‘Dual active low-frequency ripple control for clean-energy power-conditioning mechanism’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 51725785.
        . IEEE Trans. Ind. Electron. , 11 , 5172 - 5785
    4. 4)
      • C.-W. Chang , Y.-R. Chang .
        4. Chang, C.-W., Chang, Y.-R.: ‘Energy storage systems for seamless mode transfer in microgrid’. IEEE PEDS, 2011, Singapore, pp. 799802.
        . IEEE PEDS , 799 - 802
    5. 5)
      • B. Zhao , X. Zhang , J. Chen .
        5. Zhao, B., Zhang, X., Chen, J., et al: ‘Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 934943.
        . IEEE Trans. Sustain. Energy , 4 , 934 - 943
    6. 6)
      • A.K. Barnes , J.C. Balda , A. Escobar-Mejía .
        6. Barnes, A.K., Balda, J.C., Escobar-Mejía, A.: ‘A semi-Markov model for control of energy storage in utility grids and micro grids with PV generation’, IEEE Trans. Sustain Energy, 2015, 6, (2), pp. 546556.
        . IEEE Trans. Sustain Energy , 2 , 546 - 556
    7. 7)
      • C.N. Rowe , T.J. Summers , R.E. Betz .
        7. Rowe, C.N., Summers, T.J., Betz, R.E., et al: ‘Arctan power–frequency droop for improved micro grid stability’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37473759.
        . IEEE Trans. Power Electron. , 8 , 3747 - 3759
    8. 8)
      • X. Lu , J.M. Guerrero , K. Sun .
        8. Lu, X., Guerrero, J.M., Sun, K., et al: ‘Hierarchical control of parallel AC–DC converter interfaces for hybrid microgrids’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 683692.
        . IEEE Trans. Smart Grid , 2 , 683 - 692
    9. 9)
      • Y.-S. Kim , E.-S. Kim , S.-I. Moon .
        9. Kim, Y.-S., Kim, E.-S., Moon, S.-I.: ‘Frequency and voltage control strategy of standalone microgrids with high penetration of intermittent renewable generation systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 718728.
        . IEEE Trans. Power Syst. , 718 - 728
    10. 10)
      • J. He , Y.W. Li , F. Blaabjerg .
        10. He, J., Li, Y.W., Blaabjerg, F.: ‘Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 27842794.
        . IEEE Trans. Ind. Electron. , 6 , 2784 - 2794
    11. 11)
      • R.G. Wandhare , V. Agarwal .
        11. Wandhare, R.G., Agarwal, V.: ‘Novel integration of a PV-wind energy system with enhanced efficiency’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 36383649.
        . IEEE Trans. Power Electron. , 7 , 3638 - 3649
    12. 12)
      • M.M.R. Singaravel , S.A. Daniel .
        12. Singaravel, M.M.R., Daniel, S.A.: ‘MPPT with single DC–DC converter and inverter for grid-connected hybrid wind-driven PMSG–PV system’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48494857.
        . IEEE Trans. Ind. Electron. , 8 , 4849 - 4857
    13. 13)
      • A.C. Luna , N.L. Diaz , M. Graells .
        13. Luna, A.C., Diaz, N.L., Graells, M., et al: ‘Mixed-integer-linear-programming based energy management system for hybrid PV-wind-battery microgrids modeling, design and experimental verification’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 27692783.
        . IEEE Trans. Power Electron. , 4 , 2769 - 2783
    14. 14)
      • S. Arul Daniel , N. Ammasai Gounden .
        14. Arul Daniel, S., Ammasai Gounden, N.: ‘A novel hybrid isolated generating system based on PV fed inverter-assisted wind-driven induction generators’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 416422.
        . IEEE Trans. Energy Convers. , 2 , 416 - 422
    15. 15)
      • A. Ahmed , L. Ran , S. Moon .
        15. Ahmed, A., Ran, L., Moon, S., et al: ‘A fast PV power tracking control algorithm with reduced power mode’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 565575.
        . IEEE Trans. Energy Convers. , 3 , 565 - 575
    16. 16)
      • Y.-M. Chen , Y.-C. Liu , S.-C. Hung .
        16. Chen, Y.-M., Liu, Y.-C., Hung, S.-C., et al: ‘Multi-input inverter for grid-connected hybrid PV/wind power system’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10701077.
        . IEEE Trans. Power Electron. , 3 , 1070 - 1077
    17. 17)
      • C.-W. Chen , C.-Y. Liao , K.-H. Chen .
        17. Chen, C.-W., Liao, C.-Y., Chen, K.-H., et al: ‘Modeling and controller design of a semi-isolated multi-input converter for a hybrid PV/wind power charger system’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 48434853.
        . IEEE Trans. Power Electron. , 9 , 4843 - 4853
    18. 18)
      • U.K. Kalla , B. Singh , S.S. Murthy .
        18. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Normalised adaptive linear element-based control of single-phase self excited induction generator feeding fluctuating loads’, IET Power Electron., 2014, 7, (8), pp. 21512160.
        . IET Power Electron. , 8 , 2151 - 2160
    19. 19)
      • U.K. Kalla , B. Singh , S.S. Murthy .
        19. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Enhanced power generation from two-winding single-phase SEIG Using LMDT-based decoupled voltage and frequency control’, IEEE Trans. Ind Electron., 2015, 62, (11), pp. 69346943.
        . IEEE Trans. Ind Electron. , 11 , 6934 - 6943
    20. 20)
      • U.K. Kalla , B. Singh , S.S. Murthy .
        20. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Green controller for efficient diesel engine driven single-phase SEIG using maximum efficiency point operation’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 264274.
        . IEEE Trans. Ind. Electron. , 1 , 264 - 274
    21. 21)
      • U.K. Kalla , B. Singh , S.S. Murthy .
        21. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Adaptive noise suppression filter based integrated voltage and frequency controller for two-winding single-phase self-excited induction generator’, IET Renew. Power Gener., 2014, 8, (8), pp. 827837.
        . IET Renew. Power Gener. , 8 , 827 - 837
    22. 22)
      • U.K. Kalla , B. Singh , S.S. Murthy .
        22. Kalla, U.K., Singh, B., Murthy, S.S.: ‘Modified electronic load controller for constant frequency operation with voltage regulation of small hydro-driven single-phase SEIG’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 27892800.
        . IEEE Trans. Ind. Appl. , 4 , 2789 - 2800
    23. 23)
      • S. Bayhan , S. Demirbas , H. Abu-Rub .
        23. Bayhan, S., Demirbas, S., Abu-Rub, H.: ‘Fuzzy-PI-based sensorless frequency and voltage controller for doubly fed induction generator connected to a DC microgrid’, IET Renew. Power Gener., 2016, 10, (7), pp. 10691077.
        . IET Renew. Power Gener. , 7 , 1069 - 1077
    24. 24)
      • S. Bhattacharya , S. Mishra .
        24. Bhattacharya, S., Mishra, S.: ‘Efficient power sharing approach for photovoltaic generation based microgrids’, IET Renew. Power Gener., 2016, 10, (7), pp. 973987.
        . IET Renew. Power Gener. , 7 , 973 - 987
    25. 25)
      • G. Brando , A. Dannier , A.D. Pizzo .
        25. Brando, G., Dannier, A., Pizzo, A.D., et al: ‘Grid connection of wave energy converter in heaving mode operation by super capacitor storage technology’, IET Renew. Power Gener., 2016, 10, (1), pp. 8897.
        . IET Renew. Power Gener. , 1 , 88 - 97
    26. 26)
      • M.S. Mahmoud , M.S.U. Rahman , F.M.A.L. Sunni .
        26. Mahmoud, M.S., Rahman, M.S.U., Sunni, F.M.A.L.: ‘Review of microgrid architectures – a system of systems perspective’, IET Renew. Power Gener., 2015, 9, (8), pp. 10641078.
        . IET Renew. Power Gener. , 8 , 1064 - 1078
    27. 27)
      • A.C.Z.D. Souza , M. Santos , M. Castilla .
        27. Souza, A.C.Z.D., Santos, M., Castilla, M., et al: ‘Voltage security in AC microgrids: a power flow-based approach considering droop-controlled inverters’, IET Renew. Power Gener., 2015, 9, (8), pp. 954960.
        . IET Renew. Power Gener. , 8 , 954 - 960
    28. 28)
      • N. Nikmehr , S.N. Ravadanegh .
        28. Nikmehr, N., Ravadanegh, S.N.: ‘Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm’, IET Renew. Power Gener., 2015, 9, (8), pp. 982990.
        . IET Renew. Power Gener. , 8 , 982 - 990
    29. 29)
      • W.F.D. Souza , M.A.S. Mendes , L.A.C. Lopes .
        29. Souza, W.F.D., Mendes, M.A.S., Lopes, L.A.C.: ‘Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation’, IET Renew. Power Gener., 2015, 9, (7), pp. 831839.
        . IET Renew. Power Gener. , 7 , 831 - 839
    30. 30)
      • S. Mirsaeidi , D.M. Said , M.W. Mustafa .
        30. Mirsaeidi, S., Said, D.M., Mustafa, M.W., et al: ‘A protection strategy for micro-grids based on positive-sequence component’, IET Renew. Power Gener., 2015, 9, (6), pp. 600609.
        . IET Renew. Power Gener. , 6 , 600 - 609
    31. 31)
      • M. Hosseinzadeh , F.R. Salmasi .
        31. Hosseinzadeh, M., Salmasi, F.R.: ‘Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks’, IET Renew. Power Gener., 2015, 9, (5), pp. 484493.
        . IET Renew. Power Gener. , 5 , 484 - 493
    32. 32)
      • P. Li , Z. Yin , J. Zhang .
        32. Li, P., Yin, Z., Zhang, J., et al: ‘Modelling robustness for a flexible grid-tied photovoltaic generation system’, IET Renew. Power Gener., 2015, 9, (4), pp. 315322.
        . IET Renew. Power Gener. , 4 , 315 - 322
    33. 33)
      • F.A. Bhuiyan , A. Yazdani , S.L. Primak .
        33. Bhuiyan, F.A., Yazdani, A., Primak, S.L.: ‘Optimal sizing approach for islanded microgrids’, IET Renew. Power Gener., 2015, 9, (2), pp. 166175.
        . IET Renew. Power Gener. , 2 , 166 - 175
    34. 34)
      • Y. Liu , H. Xiu , Z. Wang .
        34. Liu, Y., Xiu, H., Wang, Z., et al: ‘Power control strategy for photovoltaic system based on the Newton quadratic interpolation’, IET Renew. Power Gener., 2014, 8, (6), pp. 611620.
        . IET Renew. Power Gener. , 6 , 611 - 620
    35. 35)
      • C.A. Cañizares , R. Palma-Behnke .
        35. Cañizares, C.A., Palma-Behnke, R.: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
        . IEEE Trans. Smart Grid , 4 , 1905 - 1919
    36. 36)
      • T. Esram , P.L. Chapman .
        36. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
        . IEEE Trans. Energy Convers. , 2 , 439 - 449
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0089
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address