Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Small-signal stability of power system integrated with ancillary-controlled large-scale DFIG-based wind farm

In this study, small-signal stability of the power system integrated with ancillary-controlled large-scale doubly fed induction generator (DFIG) based wind farm (WF) is studied. A model which considers grid code requirements and ancillary controllers is presented to indicate important DFIG dynamics for the study. The ancillary control of the WF which aims to improve power system voltage/frequency stability is evaluated from the small-signal stability perspective. It is shown that the ancillary controller deteriorates power system low-frequency oscillations and/or induces new lightly damped oscillation modes especially in a weak grid. The potential risks may restrict the WF to fulfil gird code requirements and threaten small-signal stability of the power system. Meanwhile, this study reveals that wind power penetration level and WF connection impedance are two main factors which affect dynamic interactions between the WF and the power system and thus affect system small-signal stability. The principle of the influence on the small-signal stability with different grid weakness and ancillary control schemes is evaluated in this study by eigenvalue analysis and verified with time-domain simulations.

References

    1. 1)
      • 4. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    2. 2)
      • 8. Xi, X., Geng, H., Yang, G.: ‘Modelling of the DFIG based wind farms for small signal stability analysis of weak power grids’. IET Renewable Power Generation Conf. (RPG 2013), Beijing, 2013, pp. 14.
    3. 3)
      • 22. Hu, J., Huang, Y., Wang, D., et al: ‘Modeling of grid-connected DFIG-based wind turbines for DC-link voltage stability analysis’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 13251336.
    4. 4)
      • 23. Fernández, R.D., Mantz, R.J., Battaiotto, P.E.: ‘Potential contribution of wind farms to damp oscillations in weak grids with high wind penetration’, Renew. Sustain. Energy Rev., 2008, 12, (6), pp. 16921711.
    5. 5)
      • 15. Hagstrøm, E., Norheim, I., Uhlen, K.: ‘Large-scale wind power integration in Norway and impact on damping in the Nordic grid’, Wind Energy, 2005, 3, (8), pp. 375384.
    6. 6)
      • 20. Wilches-Bernal, F., Chow, J.H., Sanchez-Gasca, J.J.: ‘A fundamental study of applying wind turbines for power system frequency control’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14961505.
    7. 7)
      • 7. Geng, H., Liu, C., Yang, G.: ‘LVRT capability of DFIG-based WECS under asymmetrical grid fault condition’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24952509.
    8. 8)
      • 5. Zhu, J., Guerrero, J.M., Hung, W., et al: ‘Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems’, IET Renew. Power Gener. , 2014, 8, (7), pp. 740748.
    9. 9)
      • 13. Clark, K., Miller, N.W., Sanchez-Gasca, J.J.: ‘Modeling of GE wind turbine-generators for grid studies’. Technical Report, version 4.5, GE Energy, New York, USA, 2010, pp. 1037.
    10. 10)
      • 21. Singh, M., Allen, A.J., Muljadi, E., et al: ‘Interarea oscillation damping controls for wind power plants’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 967975.
    11. 11)
      • 17. Wang, C., Shi, L., Wang, L., et al: ‘Small signal stability analysis considering grid-connected wind farms of DFIG type’. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 16.
    12. 12)
      • 24. Hansen, A.D., Sørensen, P., Iov, F., et al: ‘Centralised power control of wind farm with doubly fed induction generators’, Renew. Energy, 2006, 31, pp. 935951.
    13. 13)
      • 18. ON-Netz E.: ‘Grid code – high and extra high voltage’. Technical Report, E.ON Netz GmbH, 2009. [EB/OL]. Available at http://www.eon-netz.com/EONNETZeng.jsp.
    14. 14)
      • 9. Rodriguez, J.M., Fernandez, J.L., Beato, D., et al: ‘Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case’, IEEE Trans. Power Syst., 2002, 4, (17), pp. 10891095.
    15. 15)
      • 12. Ellis, A., Kazachkov, Y., McCoy, T., et al: ‘Development and validation of WECC variable speed wind turbine dynamic models for grid integration studies’. Technical Report, National Renewable Energy Laboratory, 2007.
    16. 16)
      • 28. Miao, Z., Fan, L.L.: ‘The art of modeling and simulation of induction generator in wind generation applications using high-order model’, Simul. Modelling Pract. Theory, 2008, 16, (9), pp. 12391253.
    17. 17)
      • 2. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    18. 18)
      • 11. Slootweg, J.G., Polinder, H., Kling, W.L.: ‘Representing wind turbine electrical generating systems in fundamental frequency simulations’, IEEE Trans. Energy Convers., 2003, 4, (18), pp. 516524.
    19. 19)
      • 19. Strachan, N.P.W., Jovcic, D.: ‘Stability of a variable-speed permanent magnet wind generator with weak AC grids’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27792788.
    20. 20)
      • 25. Wind farm power station grid code provisions, ESB National Grid, Irish TSO, 2009.
    21. 21)
      • 27. Zhang, J., Dyśko, A., Reilly, J., et al: ‘Modelling and performance of fixed-speed induction generators in power system oscillation stability studies’, Electr. Power Syst. Res. , 2008, 78, (8), pp. 14161424.
    22. 22)
      • 14. Gautam, D., Vittal, V., Harbour, T.: ‘Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems’, IEEE Trans. Power Syst., 2009, 3, (24), pp. 14261434.
    23. 23)
      • 1. Geng, H., Yang, G., Xu, D., et al: ‘Unified power control for PMSG based WECS during different grid situations’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 822830.
    24. 24)
      • 6. Vidyanandan, K.V., Senroy, N.: ‘Primary frequency regulation by deloaded wind turbines using variable droop’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 837846.
    25. 25)
      • 26. Zhang, Z.S., Sun, Y.Z., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 1, (6), pp. 3847.
    26. 26)
      • 29. Geng, H., Xu, D., Wu, B., et al: ‘Active damping for PMSG-based WECS with DC-link current estimation’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11101119.
    27. 27)
      • 3. Jain, B., Jain, S., Nema, R.K.: ‘Control strategies of grid interfaced wind energy conversion system: an overview’, Renew. Sustain. Energy Rev., 2015, 47, pp. 983996.
    28. 28)
      • 10. Rueda, J.L., Erlich, I.: ‘Impacts of large scale integration of wind power on power system small-signal stability’. Proc. of 4th Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, Shandong, 2011, pp. 673681.
    29. 29)
      • 16. Tsourakis, G., Nomikos, B.M., Vournas, C.D.: ‘Contribution of doubly fed wind generators to oscillation damping’, IEEE Trans. Energy Convers., 2009, 3, (24), pp. 783791.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0078
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address