access icon free Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller

The conventional algorithm of perturb and observe (P&O) is widely applied due to its simplicity, low cost and easy implementation. However, it suffers from instabilities during rapid changes of weather and/or oscillation around maximum power point (MPP) at steady state. Instabilities occur due to the incorrect decision taken by the conventional P&O algorithm at the first step change in duty cycle during the rapid change in radiation. The reason for the steady-state oscillation is the continuous perturbation and tradeoff between step sizes and the convergence time. This study presents a modified P&O algorithm to overcome such drawbacks. It uses a constant load technique to help the conventional P&O algorithm for recognising the cause of power change and to enable it in taking the right decision at first step change in duty cycle during rapid change of weather. The proposed algorithm is simulated using a single solar photovoltaic module of 80 W and a DC/DC boost converter. It is validated experimentally and implemented within an embedded microcontroller. The experimental setup presents a proposed model-based design methodology that uses measurements’ data for MPP tracking systems’ design. It combines hardware-in-the-loop simulation and prototype testing using actual weather measurements. Simulation and experiments show excellent results.

Inspec keywords: microcontrollers; maximum power point trackers; embedded systems; photovoltaic power systems; perturbation techniques

Other keywords: hardware-in-the-loop simulation; modified perturb and observe maximum power point tracking algorithm; constant load technique; photovoltaic system; steady-state oscillation; MPP tracking systems; embedded microcontroller; model-based design methodology; modified P&O algorithm; single solar photovoltaic module; DC/DC boost converter

Subjects: DC-DC power convertors; Solar power stations and photovoltaic power systems; Control of electric power systems

References

    1. 1)
      • 37. http://www.keil.com/appnotes/files/apnt_232.pdf.
    2. 2)
      • 16. Rawat, R., Chandel, S.: ‘Hill climbing techniques for tracking maximum power point in solar photovoltaic systems-a review’, Int. J. Sustain. Dev. Green Econ. (IJSDGE), 2013, 2, pp. 9095.
    3. 3)
      • 18. Liu, F., Kang, Y., Duan, S., et al: ‘Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter’. 3rd IEEE Conf. on Industrial Electronics and Applications, ICIEA 2008, 3–5 June 2008.
    4. 4)
      • 22. Bendib, B., Krim, F., Belmili, H., et al: ‘An intelligent MPPT approach based on neural-network voltage estimator and fuzzy controller, applied to a stand-alone PV system’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, Turky, June 2014, pp. 404409.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 4. Report to Congressional Requesters prepared by the United States General Accounting Office: ‘Meeting future electricity demand will increase emissions of some harmful substances’, October 2002. Available at http://www.gao.gov/new.items/d0349.pdf.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 32. Sera, D., Kerekes, T., Teodorescu, R., et al: ‘Improved MPPT algorithms for rapidly changing environmental conditions’. 12th Int. Power Electronics and Motion Control Conf., 2006, pp. 16141619.
    15. 15)
      • 7. Nasr Allah, A., Saied, M., Mustafa, M., et al: ‘A survey of maximum PPT techniques of PV systems’. Browse Conf. Publications Energytech, 2012, pp. 117.
    16. 16)
    17. 17)
      • 29. Abouda, S., Frederic, N., Koubaa, Y., et al: ‘Design, simulation and voltage control of standalone photovoltaic system based MPPT: application to a pumping system’, Int. J. Renew. Energy Res., 2013, 3, pp. 538549.
    18. 18)
      • 35. Rashid, M.: ‘Power electronics hand book’ (Academic press, New York, 2001).
    19. 19)
    20. 20)
      • 9. Joe-Air, J., Tsong-Liang, H., Ying-Tung, H., et al: ‘Maximum power tracking for photovoltaic power systems’, Tamkang J. Sci. Eng., 2005, 8, pp. 147153.
    21. 21)
      • 34. Peftitsis, D., Adamidis, G., Balouktsis, A.: ‘An investigation of new control method for MPPT in PV array using DC/DC buck–boost converter’. 2nd WSEAS/IASME Int. Conf. on Renewable Energy Sources (RES'08), Corfu, Greece, 2008, pp. 4045.
    22. 22)
      • 11. Swathy, A., Archana, R.: ‘Maximum power point tracking using modified incremental conductance for solar photovoltaic system’, Int. J. Eng. Innov. Technol. (IJEIT), 2013, 3, (2), pp. 333337.
    23. 23)
      • 3. Omran, W.: ‘Performance analysis of grid-connected photovoltaic systems’. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada, 2010.
    24. 24)
    25. 25)
    26. 26)
      • 6. Faranda, R., Leva, S.: ‘Energy comparison of MPPT techniques for PV systems’, WSEAS Trans. Power Syst., 2008, 3, (6), pp. 446455.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 2. Kollimalla, K., Mishra, M.: ‘Adaptive perturb & observe MPPT algorithm for photovoltaic system’. 2013 IEEE Power and Energy Conf. at Illinois (PECI), 2013, pp. 4247.
    31. 31)
      • 8. Killi, M., Samanta, S.: ‘Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems’, IEEE Trans. Ind. Electron., 2015, PP, (99), pp. 110.
    32. 32)
      • 28. Sharp Electronics Corporation: ‘Poly-crystalline silicon photovoltaic module with 80 W maximum power [datasheet]’ (Sharp Electronics Corporation, NY, USA, 2005).
    33. 33)
      • 33. Alqarni, M., Darwish, K.: ‘Maximum power point tracking for photovoltaic system: modified perturb and observe algorithm’. 2012 47th IEEE Int. Universities Power Engineering Conf. (UPEC), 2012, pp. 14.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 36. Lutron Electronics: ‘SOLAR POWER METER: SD card real time data recorder, patented spectral response: 400 to 1100 nm [datasheet]’, 2012. Available at http://www.sunwe.com.tw/lutron/SPM-1116SD.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0309
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading