access icon openaccess Hydraulic–pneumatic flywheel system in a wind turbine rotor for inertia control

In this study a flywheel (FW) system, which is integrated in the rotor of a wind turbine (WT), is proposed. It is made of hydraulic–pneumatic piston accumulators and its primary purpose is to provide the power system with inertia. Power system inertia is an essential premise for primary frequency control. The equations describing the system are presented. Simulation results show that the performance of such a FW system is superior to the commonly used approach of using WTs to provide the power system with so-called synthetic inertia.

Inspec keywords: hydraulic actuators; flywheels; power generation control; mechanical variables control; angular velocity control; frequency control; machine control; wind turbines; pneumatic actuators; rotors (mechanical)

Other keywords: primary frequency control; wind turbine rotor; hydraulic-pneumatic flywheel system; inertia control; synthetic inertia; hydraulic-pneumatic piston accumulators

Subjects: Hydraulic and pneumatic control equipment; Mechanical components; Mechanical variables control; Frequency control; Power and plant engineering (mechanical engineering); Wind power plants; Velocity, acceleration and rotation control; Control of electric power systems

References

    1. 1)
      • 11. Erlich, I., Wilch, M.: ‘Primary frequency control by wind turbines’. IEEE Power and Energy Society General Meeting, 2010.
    2. 2)
      • 16. Hansen, M.H., Hansen, A., Larsen, T.J., et al: ‘Control design for a pitch-regulated, variable speed wind turbine’ (Risø-R-1500(EN), Risø National Laboratory, Roskilde, Denmark, 2005).
    3. 3)
      • 20. Fox, R.W., McDonald, A.T., Pritchard, P.J.: ‘Introduction to fluid mechanics’ (John Wiley & Sons, Inc., 2004, 6th edn.).
    4. 4)
      • 15. International Electrotechnical Commission: ‘International Standard, IEC 61400-27-1’, Edition 1.0, 2015-02.
    5. 5)
      • 10. Miller, N., Wachtel, S., Burra, R., et al: ‘The GE hybrid wind turbine with integrated battery energy storage’. 13th Wind Integration Workshop, Conf. Proc., Berlin, 2014.
    6. 6)
      • 12. Juankorena, X., Esandi, I., Lopez, J., et al: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, March 2009, pp. 495500.
    7. 7)
      • 14. Germanischer Lloyd Industrial Services GmbH: ‘Guideline for the certification of wind turbines’ (Germanischer Lloyd, 2010).
    8. 8)
      • 19. Sørensen, P., Hansen, A., Christensen, P., et al: ‘Simulation and verification of transient events in large wind power installations’ (Risø-R-1331(EN), Risø National Laboratory, Roskilde, Denmark, 2003).
    9. 9)
    10. 10)
      • 2. Asmine, M., Langlois, C.E.: ‘Field measurements for the assessment of inertial response for wind power plants based on hydro-quebec transenergie requirements’. 13th Wind Integration Workshop, Conf. Proc., Berlin, 2014.
    11. 11)
      • 21. Potter, M.C., Wiggert, D.C.: ‘Mechanics of fluids’ (Prentice-Hall International Inc., 1991).
    12. 12)
      • 5. Duckwitz, D., Shan, M., Fischer, B.: ‘Synchronous inertia control for wind turbines’. 13th Wind Integration Workshop, Conf. Proc., Berlin, 2014.
    13. 13)
      • 18. Sørensen, P., Hansen, A., Janosi, L., et al: ‘Simulation of interaction between wind farm and power system’ (Risø-R-1281(EN), Risø National Laboratory, Roskilde, Denmark, 2001).
    14. 14)
    15. 15)
      • 13. Fischer, M., Engelken, S., Mihov, N., et al: ‘Operational experiences with inertial response provided by Type 4 wind turbines’. 13th Wind Integration Workshop, Conf. Proc., Berlin, 2014.
    16. 16)
    17. 17)
      • 6. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, Inc., New York, 1994, ISSN/ISBN: 0-07-035958-X).
    18. 18)
      • 17. Hansen, A., Jauch, C., Sørensen, P., et al: ‘Dynamic wind turbine models in power system simulation tool DIgSILENT’ (Risø-R-1400(EN), Risø National Laboratory, Roskilde, Denmark, 2003).
    19. 19)
    20. 20)
    21. 21)
      • 3. ENTSO-E: ‘ENTSO-E Network code for requirements for grid connection applicable to all generators’, 26 June 2012. Available at http://www.networkcodes.entsoe.eu/, accessed 04 December 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0223
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading