access icon free Power plant control in large-scale photovoltaic plants: design, implementation and validation in a 9.4 MW photovoltaic plant

This study proposes an algorithm for active and reactive power management in large photovoltaic (PV) power plants. The algorithm is designed in order to fulfil the requirements of the most demanding grid codes and combines the utilisation of the PV inverters, fixed switched capacitors and static synchronous compensators. The control algorithm is simulated as required by the grid codes and validated on a real 9.4 MW PV power plant.

Inspec keywords: invertors; control system synthesis; switched capacitor networks; static VAr compensators; solar power stations; power grids; reactive power control; power system management

Other keywords: power plant control algorithm; large-scale photovoltaic plant design; large-scale photovoltaic plant implementation; grid codes; active power management; fixed switched capacitor; power 9.4 MW; static synchronous compensator; reactive power management; PV inverter utilisation; large-scale photovoltaic plant validation

Subjects: DC-AC power convertors (invertors); Power system control; Power and energy control; Power system management, operation and economics; Solar power stations and photovoltaic power systems; Control system analysis and synthesis methods; Control of electric power systems

References

    1. 1)
    2. 2)
    3. 3)
      • 21. Yaoyuan, L., Chengbi, Z., Hong, M., et al: ‘Research on a new method to achieve low voltage ride through of PV’. 2014 Int. Conf. on Power System Technology (POWERCON), October 2014, pp. 10641070.
    4. 4)
      • 17. Bullich-Massagué, E., Aragüés-Pẽnalba, M., Ferrer-San-José, R., et al: ‘Power plant control experience in large scale PV plant. Modelling, control, simulation and implementation’. 4th Int. Workshop on Integration of Solar into Power Systems, Berlin, November 2014.
    5. 5)
      • 6. Grid connection code for renewable power plants (RPPs) connected to the electricity transmission system (TS) or the distribution system (DS) in South Africa, 2012.
    6. 6)
      • 26. Ehs annual monitoring report. 2012.
    7. 7)
      • 1. European Commission: ‘Communication from the commission to the European Council and the European Parliament – an energy policy for Europe’ (Commission of the European Communities, 2007).
    8. 8)
    9. 9)
      • 20. Varma, R.K., Rahman, S., Vanderheide, T.: ‘New control of PV solar farm as STATCOM (PV-STATCOM) for increasing grid power transmission limits during night and day’, IEEE Trans. Power Deliv., 2014, PP, (99), pp. 11.
    10. 10)
      • 25. http://www.schrack-seconet.com, accessed January 2015.
    11. 11)
      • 22. IEA PVPS Task 8: project proposals on very large scale photovoltaic power generation (VLS-PV) systems in deserts, May 2006, vol. 2.
    12. 12)
      • 4. Pineda, J.M.I., Azau, S., Wilkes, J.: ‘Wind in power. 2013 European statistics’ (EWEA, European Wind Energy Association, 2014).
    13. 13)
      • 12. Gaztanaga, H., Landaluze, J., Etxeberria-Otadui, I., et al: ‘Enhanced experimental PV plant grid-integration with a MW lithium-ion energy storage system’. 2013 IEEE Energy Conversion Congress and Exposition (ECCE), September 2013, pp. 13241329.
    14. 14)
    15. 15)
      • 2. Medium-Term Market Report Executive Summary 2014. Market Analysis and Forecasts to 2020. IEA, International Energy Agency.
    16. 16)
      • 13. van Haaren, R., Morjaria, M., Fthenakis, V.: ‘Utility scale PV plant variability and energy storage for ramp rate control’. 2013 IEEE 39th Photovoltaic Specialists Conf. (PVSC), June 2013, pp. 09730979.
    17. 17)
    18. 18)
      • 3. Ferroukhi, R., , Gielen, D., , Kieffer, G.: ‘REthinking Energy, 2014’ (IRENA, International Renewable Energy Agency, 2014).
    19. 19)
      • 27. http://en.grupotsk.com/proyectos/vanju-mare, accessed January 2015.
    20. 20)
    21. 21)
      • 9. Noone, B.: ‘PV integration on Australian distribution networks. Literature review’ (The Australian PV Association, 2013).
    22. 22)
      • 10. Standard large generator interconnection agreement (LGIA) among interconnection customer and California Independent system operator corporation.
    23. 23)
    24. 24)
      • 5. Berndt, H., , Hermann, M., , Kreye, D.H.: ‘Transmission code 2007 – network and system rules of the German transmission system operators’ (Verband der Netzbetreiber – VDN – e.V. beim VDEW, 2007).
    25. 25)
    26. 26)
      • 8. Minimum technical requirements for interconnection of photovoltaic (PV) facilities. Puerto Rico Electric Power Authority. PREPA, 2012.
    27. 27)
      • 7. Technical transmission grid code of the Romanian power system. Romanian Power Grid Company TRANSELECTRICA S.A., 2004.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2015.0113
Loading

Related content

content/journals/10.1049/iet-rpg.2015.0113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading