http://iet.metastore.ingenta.com
1887

Worldwide photovoltaic energy yield sensitivity from a variety of input losses

Worldwide photovoltaic energy yield sensitivity from a variety of input losses

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The energy yield of a system depends largely on how the photovoltaic (PV) panels perform at different weather conditions (particularly plane of array irradiance and module temperature) summed over the hourly meteorological data for a year at the given site. Some of the PV performance parameters such as ‘efficiency at low light/efficiency at standard conditions’ and the ‘P MAX thermal coefficient’ can vary between technologies and may be able to be improved by better production methods (for example, improving uniformity, reducing shunts, reducing series resistance or improving the thermal design). The sensitivity of energy yield (kilowatt hour/year) against PV input value will be site dependent, for example, high insolation sites will usually experience higher module temperatures so that improvements in temperature coefficients would be more beneficial at higher than at lower insolation. This study studies the effect of the sensitivity of energy yield at five different sites (from northern Europe to desert) of six different PV input values (including low-light efficiency, P MAX temperature coefficient and nominal operating cell temperature). It quantifies the benefits at each site of good temperature coefficients or improving the low-light efficiency and also the need for wide V MP inverter ranges at sites with wide seasonal temperature differences.

References

    1. 1)
      • Zinsser , G. Makrides , M.B. Schubert , G.E. Georghiou , J.H. Werner .
        1. Zinsser, , Makrides, G., Schubert, M.B., Georghiou, G.E., Werner, J.H.: ‘Rating of annual energy yield more sensitive to reference power than module technology’. 35th PVSC Honolulu, 2010.
        . 35th PVSC Honolulu
    2. 2)
      • Y. Ueda , Y. Tsuno , M. Kudou , H. Konishi , K. Kurokawa .
        2. Ueda, Y., Tsuno, Y., Kudou, M., Konishi, H., Kurokawa, K.: ‘Performance degradation analyses of different kinds of PV technologies in Hokuto mega solar project’. 26th PVSEC Hamburg, 2011.
        . 26th PVSEC Hamburg
    3. 3)
      • U. Jahn , M. Schweiger , W. Herrmann .
        3. Jahn, U., Schweiger, M., Herrmann, W.: ‘Comparison of different thin-film technologies – performance characteristics obtained from laboratory and field tests’. 25th PVSEC Valencia, 2010.
        . 25th PVSEC Valencia
    4. 4)
      • Jordan .
        4. Jordan, : ‘Methods for analysis of outdoor performance data’, PV Reliability Golden 2011 link.
        .
    5. 5)
      • D.C. Jordan , J.H. Wohlgemuth , S.R. Kurtz .
        5. Jordan, D.C., Wohlgemuth, J.H., Kurtz, S.R.: ‘Technology and climate trends in PV module degradation’. 27th PVSEC Frankfurt, 2012.
        . 27th PVSEC Frankfurt
    6. 6)
      • 6. IEC 61853-1 – ‘Photovoltaic (PV) module performance testing and energy rating – Part 1: Irradiance and temperature performance measurements and power rating’.
        .
    7. 7)
      • C.P. Cameron , A.C. Goodrich .
        7. Cameron, C.P., Goodrich, A.C.: ‘The levelized cost of energy for distributed PV: a parametric study’. PVSC, 2009.
        . PVSC
    8. 8)
      • S. Ringbeck , J. Sutterlueti .
        8. Ringbeck, S., Sutterlueti, J.: ‘BoS costs: status and optimization to reach industrial grid parity’. 27th PVSEC Frankfurt, 2012.
        . 27th PVSEC Frankfurt
    9. 9)
      • 9. ‘Datasheet and nameplate information for photovoltaic modules BS EN 50380:2003’. Available at http://www.shop.bsigroup.com/ProductDetail/?pid=000000000030078996, accessed 21 January 2015.
        .
    10. 10)
      • 10. IEC 61724/2 ‘PV System Performance Monitoring – Guidelines for measurements, Data Exchange and Analysis’.
        .
    11. 11)
      • S. Ransome , J. Sutterlueti .
        11. Ransome, S., Sutterlueti, J.: ‘Estimating the sensitivity of energy performance from optimising different PV technologies worldwide’. 39th IEEE PVSC Tampa, Florida, USA, June 2013. Paper #80.
        . 39th IEEE PVSC Tampa
    12. 12)
      • 12. ‘PVSYST Navigation: Project design Array and system losses’. Available at http://www.files.pvsyst.com/help/index.html, accessed 21 January 2015.
        .
    13. 13)
      • 13. ‘PV Performance Modeling Collaborative (PVPMC)’ modelling steps. Available at https://www.pvpmc.sandia.gov/modeling-steps, accessed 21 January 2015.
        .
    14. 14)
      • A. Artigao , D.W. Cunningham , K. Deponte .
        14. Artigao, A., Cunningham, D.W., Deponte, K., et al: ‘4% Higher energy conversion from BP 7180 modules’. 21st PVSEC Dresden, 2006.
        . 21st PVSEC Dresden
    15. 15)
      • 15. IEC 61853-2 – ‘Angle of Incidence Effect on Photovoltaic Modules’.
        .
    16. 16)
      • L. Nelson , M. Frichtl , A. Panchula .
        16. Nelson, L., Frichtl, M., Panchula, A.: ‘Changes in cadmium telluride PV system performance due to spectrum’. 38th PVSC Austin, 2012.
        . 38th PVSC Austin
    17. 17)
      • R. Ruther , J. del Cueto , G. Tamizh-Mani .
        17. Ruther, R., del Cueto, J., Tamizh-Mani, G.: ‘Performance test of amorphous silicon modules in different climates – year four: progress in understanding exposure history stabilization effects’. 33rd PVSC San Diego, 2008.
        . 33rd PVSC San Diego
    18. 18)
      • S. Ransome , J. Wohlgemuth .
        18. Ransome, S., Wohlgemuth, J.: ‘Predicting kWh/kWp performance for amorphous silicon thin film modules’. 28th PVSC Anchorage, Alaska, USA, September 2000, Paper 5P1.15.
        . 28th PVSC Anchorage
    19. 19)
      • D. King , W.E. Boyson , J.A. Kratochvill .
        19. King, D., Boyson, W.E., Kratochvill, J.A.: ‘Photovoltaic array performance model’. Available at http://www.energy.sandia.gov/wp/wp-content/gallery/uploads/SAND-2004_PV-Performance-Array-Model.pdf, accessed 21 January 2015.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0362
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0362
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address