access icon free Controlling stored energy in a concentrating solar thermal power plant to maximise revenue

New electricity generation technologies are often assessed using simple metrics such as average return, break-even energy prices or levelised cost of electricity. These simple metrics do not always capture the full economic value of a technology, particularly those that can react quickly and efficiently to changes in demand. In a wholesale spot market, opportunities exist to capture greater revenues, as currently achieved by peak power plants. This study demonstrates the use of two complementary methods to determine how storage should be operated to maximise revenue. First, the authors formulate and solve the problem as a linear program. The results indicate that there are distinct control modes. They then use Pontryagin's principle to confirm that the optimal operating strategy has three distinct control modes: (i) store all collected power, without generating, (ii) generate using collected power only and (iii) generate at maximum capacity using both collected and stored power. The mode that should be used at any instant depends only on the spot price of electricity relative to a pair of critical prices. These critical prices depend on the total energy that will be collected and the turnaround efficiency of the storage system.

Inspec keywords: power markets; power generation control; solar power stations; maximum principle; power generation economics; linear programming; thermal power stations

Other keywords: linear program; electricity spot price; levelised electricity cost; concentrating solar thermal power plant; average return; distinct control mode; storage system turnaround efficiency; revenue maximisation; wholesale spot market; Pontryagin principle; peak power plants; electricity generation technologies; stored energy control; optimal operating strategy; break-even energy prices

Subjects: Solar power stations and photovoltaic power systems; Power system management, operation and economics; Optimisation techniques; Thermal power stations and plants; Control of electric power systems; Optimal control; Optimisation techniques

References

    1. 1)
      • 8. Gilman, P., Blair, N., Mehos, M., Christensren, C., Janzou, S., Cameron, C.: ‘Solar advisor model: user guide for version 2.0’. Technical Report, NREL/TP-670-43704, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000, 2008. http://www.nrel.gov/docs/fy08osti/43704.pdf.
    2. 2)
      • 21. Marriott, K., Stuckey, P.J.: ‘A minizinc tutorial’, 2013. http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf.
    3. 3)
      • 19. AEMC: National Electricity Rules: Current Rules.2013, http://aemc.gov.au/Electricity/National-Electricity-Rules/Current-Rules.html.
    4. 4)
    5. 5)
    6. 6)
      • 20. Henkel, N., Schmid, E., Gobrecht, E.: ‘Operational flexibility enhancements of combined cycle power plants’. Tech. Rep., Siemens, 2007. https://www.cee.siemens.com/web/ua/ru/production_energy/Documents/Service_OperationalFlexibilityEnhancementsofCombinedCyclePowerPlants.pdf.
    7. 7)
      • 9. Gilman, P., Dobos, A.: ‘System advisor model, SAM 2011·12·2: general description’. Technical Report, NREL/TP-6A20-53437, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000, 2012, http://www.nrel.gov/docs/fy12osti/53437.pdf.
    8. 8)
      • 22. Wittmann, M., Eck, M., Hirsch, T., Pitz-Paal, R.: ‘Theoretical economic potential of the spanish premium tariff for solar thermal power plants’. Proc. 14th SolarPACES Conf., Las Vegas, 2008, pp. 18, http://www.solarthermalworld.org/sites/gstec/files/theoreticaleconomicpotential.pdf.
    9. 9)
    10. 10)
      • 3. Cabeza, L.F.3·07 – Thermal energy storage’, in Sayigh, E.i.C.A. (Ed.) ‘Compr. renew. Energy’ (Elsevier, Oxford, 2012), pp. 211253, doi: 10.1016/B978-0-08-087872-0.00307-3. http://www.sciencedirect.com/science/article/pii/B9780080878720003073.
    11. 11)
    12. 12)
    13. 13)
      • 17. Morin, G.: ‘Optimisation of concentrating solar power (CSP) plant designs through integrated techno-economic modelling’, in Lovegrove, K., Stein, W. (Eds.): ‘Conc. sol. power technol. princ. dev. appl.’ (in Woodhead Publishing Series, in Energy, Woodhead Publishing, 2012), Ch. 16, no. 21, pp. 495535. doi: 10.1533/9780857096173.3.495.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 2. Hoffschmidt, B., Alexopoulos, S., Göttsche, J., Sauerborn, M., Kaufhold, O.: ‘3·06 – High concentration solar collectors’, in Sayigh, E.i.C.A. (Ed.): ‘Compr. renew. Energy’ (Elsevier, Oxford, 2012), pp. 165209, doi: 10.1016/B978-0-08-087872-0.00306-1. http://www.sciencedirect.com/science/article/pii/B9780080878720003061.
    20. 20)
      • 10. Lovegrove, K., Franklin, S., Elliston, B.: ‘Australian companion guide to SAM for concentrating solar power’. Tech. Rep. May, Australian Solar Thermal Energy Association (AUSTELA), 2013, http://www.austela.com.au/projects.
    21. 21)
      • 1. Lovegrove, K., Pye, J.: ‘Fundamental principles of concentrating solar power {(CSP)} systems’, in Lovegrove, K., Stein, W. (Eds.): ‘Conc. sol. power technol.’ (in Woodhead Publishing Series in Energy, Woodhead Publishing, 2012), Ch. 2. no.21, pp. 1667, doi: 10.1533/9780857096173.1.16.
    22. 22)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0141
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading