access icon free Sliding mode regulator for maximum power tracking and copper loss minimisation of a doubly fed induction generator

Maximum power tracking and copper loss minimisation of a doubly fed induction generator (DFIG) can be achieved through the control of rotor currents. In this study, a sliding mode regulator (SMR) is presented to regulate the rotor current of a DFIG. The purpose of the SMR is to regulate the rotor current to the target commands of maximum power tracking and copper loss minimisation with stator flux orientation. The robustness to parameter variations can be accomplished by the proposed SMR when the wind turbine is subject to changing wind speed. Simulation results of the DFIG system on a 2.5 MW generator are provided and compared with a fixed-gain proportional–integral (PI) regulator. It is observed from the simulation results that the dynamic responses achieved by the proposed SMR are more robust than those by the fixed-gain PI regulator. The chattering effect caused by the switching function of the SMR can be reduced by an integral type SMR.

Inspec keywords: asynchronous generators; wind turbines; PI control; electric current control; variable structure systems; stators; rotors

Other keywords: switching function; chattering effect; doubly fed induction generator; PI regulator; stator flux orientation; wind turbine; sliding mode regulator; maximum power tracking; rotor current control; copper loss minimisation; rotor current regulation; SMR; DFIG; fixed-gain proportional-integral regulator

Subjects: Multivariable control systems; Control of electric power systems; Wind power plants; Current control; Asynchronous machines

References

    1. 1)
      • 8. Boldea, I.: ‘Variable Speed Generators’ (CRC Press, Boca Raton, FL, 2006, 1st edn.).
    2. 2)
      • 27. Ong, C.M.: ‘Dynamic simulation of electric machinery using matlab/simulink’ (Prentice-Hall, 2005).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 16. Wu, B., Lang, Y., Zargari, N., Kouro, S.: ‘Power conversion and control of wind energy system’ (Institute of Electrical and Electronics Engineers and John Wiley & Sons, 2011).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 23. Slotine Jean-Jacques, E., Li, W.: ‘Applied Nonlinear Control’ (Prentice-Hall, 1991).
    15. 15)
    16. 16)
    17. 17)
      • 2. Filho, A.J.S., De Oliverira Filho, M.E., Filho, E.R.: ‘A predictive power control for wind energy’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 99105.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 15. Chen, B.A., Lu, T.K., Hsu, Y.Y., Chen, W.L., Lee, Z.C.: ‘An analytical approach to maximum power tracking and loss minimization of a doubly fed induction generator considering core loss’, IEEE Trans. Energy Convers., 2012, 24, (1), pp. 137145.
    25. 25)
    26. 26)
      • 17. Hofmann, W., Okafor, F.: ‘Doubly-fed full-controlled induction wind generator for optimal power utilisation’. Proc. Fourth IEEE Int. Conf. on Power Electronics and Drive System, Indonesia, October 2001, pp. 355361.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0125
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0125
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading