access icon openaccess Impact of K-factor and active current reduction during fault-ride-through of generating units connected via voltage-sourced converters on power system stability

This study investigates the impact of the injection of additional reactive current and of active current reduction during fault-ride-through (FRT) of generating units connected to the grid via fully rated voltage-sourced converter (VSC generating units) on the behaviour and stability of the power system. The primary focus is on voltage support, transient stability and frequency stability. The investigation is carried out via computer simulations using a fictitious transmission system, based on German grid code requirements. The K-factor of the dependence of additional reactive current with voltage deviation, the method of active current limitation during FRT and the rate of active power recovery after fault clearance are varied. Results and influences are illustrated and discussed. They show that with an increasing number of converter-connected generating units in power systems, a careful selection of the parameters becomes very important. Insufficient grid code requirements may increase the risk of system instability. Conclusions are drawn and recommendations for optimal settings with respect to future development of grid codes are provided. The mechanism of loss of synchronism of VSC generating units because of inadequate current injection (current angle instability) is explained.

Inspec keywords: power generation faults; reactive power control; power convertors; power grids; frequency stability; power system transient stability

Other keywords: Germany; voltage-sourced converters; K-factor; active current reduction; voltage deviation; active power recovery; transient stability; grid codes; voltage support; power system stability; frequency stability; fault clearance; fault-ride-through

Subjects: Power system control; Control of electric power systems; Power convertors and power supplies to apparatus

References

    1. 1)
      • 10. VDN: ‘TransmissionCode 2007’ (Verband der Netzbetreiber VDN e.V. beim VDEW, Berlin, Germany, Version 1.1, August 2007).
    2. 2)
      • 13. ‘Verordnung zu Systemdienstleistungen durch Windenergieanlagen (Systemdienstleistungsverordnung – SDLWindV)’ (‘ordinance on system services by wind energy plants’) (Bundesgesetzblatt Jahrgang 2009 Teil I Nr. 39, Bonn, Germany, 2009).
    3. 3)
      • 29. O'Sullivan, J., Kennedy, A., Boemer, J., et al: ‘Maximising the real time system penetration of windfarms on the Ireland and Northern Ireland power system’. Ninth Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Québec City, Canada, October 2010.
    4. 4)
      • 19. EirGrid grid code’, Version 5.0 (Republic of Ireland, 7 October 2013).
    5. 5)
      • 2. ENTSO-E: ‘Statistical yearbook 2011’ (European Network of Transmission System Operators for Electricity ENTSO-E, Brussels, Belgium).
    6. 6)
      • 7. Weise, B.: ‘Beeinflussung der Netzstabilität durch die Wirkstromreduktion im LVRT-Modus von Stromrichter-Erzeugungseinheiten und den Gradienten der Wirkleistungssteigerung nach Fehlerklärung’ (‘impact of active current reduction in LVRT mode of generating units connected via converters and of active power ramping speed after fault clearance on network stability’) (ETG-Kongress, Berlin, Germany, November 2013).
    7. 7)
      • 11. BDEW: ‘Technische Richtlinie Erzeugungsanlagen am Mittelspannungsnetz – Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz’ (BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., Berlin, Germany, June 2008).
    8. 8)
      • 18. Guidance notes – power park modules’ (National Grid Electricity Transmission, Issue 3, UK, September 2012).
    9. 9)
      • 17. The grid code’, Issue 5, Revision 6 (National Grid Electricity Transmission plc, UK, 13 December 2013).
    10. 10)
      • 28. All island TSO facilitation of renewables study’, EirGrid, SONI. Available at http://www.eirgrid.com/renewables/facilitationofrenewables/, accessed January 2012.
    11. 11)
      • 5. Kundur, P., Paserba, J., Aijarapu, V., et alIEEE/CIGRE Joint Task Force on Stability Terms and Definitions: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    12. 12)
      • 9. UCTE: ‘Operation handbook’, Appendix 1: ‘Load frequency control and performance’ (Union for the Co-ordination of Transmission of Electricity UCTE, 2004).
    13. 13)
      • 30. DIgSILENT PowerFactory, Technical Reference Documentation: ‘Phase measurement device’ (DIgSILENT GmbH, Gomaringen, Germany, 2013).
    14. 14)
      • 26. VDE-AR-N 4105: ‘Technische Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Niederspannungsnetz’ (VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V., Frankfurt am Main, Berlin, 2011).
    15. 15)
    16. 16)
      • 16. FGW: ‘Technische Richtlinien – Teil 4: Anforderungen an Modellierung und Validierung von Simulationsmodellen der elektrischen Eigenschaften von Erzeugungseinheiten und –anlagen(‘TR4’) (FGW e.V. – Fördergesellschaft Windenergie und andere Erneuerbare Energien, Berlin, Revision 6, 1 May 2013).
    17. 17)
      • 27. Boemer, J.C., van der Meer, A.A., Rawn, B.G., et al: ‘Network fault response of transmission systems with active distribution systems during reverse power flows’. Tenth Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Aarhus, Denmark, October 2011.
    18. 18)
      • 23. Nelles, D.: ‘Bedeutung der Spannung- und Frequenzabhängigkeit von Lasten in Netzplanung und Netzbetrieb’, etz-Archiv Bd. 7 (1985) H. 1, pp. 1115.
    19. 19)
      • 4. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, Inc., New York etc., 1994), ISBN 0-07-035958-X.
    20. 20)
      • 22. Handschin, E., Reißling, T.: ‘Frequenz- und Spannungsabhängigkeit von Verbrauchergruppen und Verbraucherteilnetzen’. VDI Berichte 582: Wirkleistungs- und Blindleistungssekundenreserve, VDI Verlag, Düsseldorf, 1986, pp. 2552.
    21. 21)
      • 8. dena-Netzstudie: ‘Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020’ (Deutsche Energie-Agentur GmbH (dena), Köln, Endbericht, 2005).
    22. 22)
      • 15. Teodorescu, R., Liserre, M., Rodríguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (John Wiley & Sons, 2011), ISBN 978-0-470-05751-3.
    23. 23)
      • 3. CIGRÉ Joint Working Group C1/C2/C6.18: ‘Coping with limits for very high penetrations of renewable energy(CIGRÉ Technical Brochure, No. 527, February 2013, ISBN 978-2-85873-220-3).
    24. 24)
      • 12. BDEW: ‘Regelungen und Übergangsfristen für bestimmte Anforderungen in Ergänzung zur Technischen Richtlinie: Erzeugungsanlagen am Mittelspannungsnetz – Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz’ (BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., Berlin, Germany, 1 January 2013).
    25. 25)
      • 25. Erlich, I., Shewarega, F., Engelhardt, S., Kretschmann, J., Fortmann, J., Koch, F.: ‘Effect of wind turbine output current during faults on grid voltage and the transient stability of wind parks’. IEEE PES General Meeting, Calgary, Canada, July 2009.
    26. 26)
      • 14. P.O. 12.2: ‘Instalaciones conectadas a la red de transporte y equipo generador: requisitos minimos de diseño, equipamiento, functionamiento, puesta en servicio y seguridad’, Propuesta (Draft), Septiembre de 2010.
    27. 27)
      • 32. Göksu, Ö.: ‘Control of wind turbines during symmetrical and asymmetrical grid faults’. PhD thesis, Aalborg University, Department of Energy Technology, Aalborg, Denmark, December 2012.
    28. 28)
      • 24. Boemer, J.C., Gibescu, M., van der Meijden, M., Rawn, B.G., Kling, W.L.: ‘Network fault response of wind power plants in distribution systems during reverse power flows (Part II)’. 12th Wind Integration Workshop, London, UK, October 2013.
    29. 29)
    30. 30)
      • 31. Diedrichs, V., Beekmann, A., Adloff, S.: ‘Loss of (angle) stability of wind power plants – the underestimated phenomenon in case of very low short circuit ratio’. Tenth Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Aarhus, Denmark, October 2011.
    31. 31)
      • 20. Oeding, D., Oswald, B.R.: ‘Elektrische Kraftwerke und Netze’ (Springer Verlag, Berlin, Heidelberg, 2004, 6th edn.), ISBN 3-540-00863-2.
    32. 32)
      • 1. ENTSO-E: ‘Network code for requirements for grid connection applicable to all generators(NC RfG) (European Network of Transmission System Operators for Electricity ENTSO-E, Brussels, Belgium, 8 March 2013).
    33. 33)
      • 6. Weise, B.: ‘Optimal K-factor and active current reduction during fault-ride-through of converter-connected generating units for power system stability’. 12th Wind Integration Workshop, London, UK, October 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2014.0116
Loading

Related content

content/journals/10.1049/iet-rpg.2014.0116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading