access icon free Indirect coordination of electricity demand for balancing wind power

High penetration of wind energy in modern power systems led to an increase in the balancing requirements, especially in load-following and unit commitment time frames, which only further compromised the overall reliability and efficiency of electricity supply. One of the possible solutions to address this critical balancing capacity issue is the application of demand response schemes on regular basis for matching electricity consumption and production. This study examines the existing applications of demand response in the given area and proposes an alternative approach based on a proactive dispatch of large industrial consumers by using indirect coordination. The candidate industries suitable for the implementation of the new demand response scheme are sought for and presented. The usefulness and the performance of the proposed arrangement operating as a regular balancing mechanism have been evaluated and demonstrated in several test-case scenarios by applying simplified Monte Carlo simulations.

Inspec keywords: Monte Carlo methods; power generation scheduling; power generation dispatch; wind power plants; demand side management

Other keywords: wind power balancing; Monte Carlo simulations; regular balancing mechanism; demand response schemes; industrial consumers; electricity supply reliability; indirect coordination; electricity supply efficiency; electricity demand; power systems; proactive dispatch; load-following; unit commitment time frames; electricity consumption matching; high wind energy penetration

Subjects: Monte Carlo methods; Wind power plants; Power system management, operation and economics

References

    1. 1)
      • 17. Goellner, J., Miller, J., Renz, B., et alDemand dispatch: intelligent demand for a more efficient grid’. Technical Report, DOE/NETL-DE-FE0004001, National Energy Technology Laboratory, August 2011.
    2. 2)
      • 14. Heffner, G., Goldman, C., Kirby, B., Kintner-Meyer, M.: ‘Loads providing ancillary services: review of international experience’. Report, LBNL-62701, Lawrence Berkeley National Laboratory, May 2007.
    3. 3)
      • 7. Borenstein, S., Jaske, M., Rosenfeld, A.: ‘Dynamic pricing, advanced metering and demand response in electricity markets’ (Center for the Study of Energy Markets, 2002).
    4. 4)
      • 8. Goldman, C., Hopper, N., Neenan, B., et al: ‘Does real-time pricing deliver demand response? A case study of Niagara Mohawk's large customer RTP tariff’. Technical Report, LBNL-54974, Lawrence Berkeley National Laboratory, August 2004.
    5. 5)
      • 17. Goellner, J., Miller, J., Renz, B., et alDemand dispatch: intelligent demand for a more efficient grid’. Technical Report, DOE/NETL-DE-FE0004001, National Energy Technology Laboratory, August 2011.
    6. 6)
      • 1. Holttinen, H., Meibom, P., Orths, A., et al: ‘Design and operation of power systems with large amounts of wind power’. VTT Research Notes 2493, Espoo, 2009.
    7. 7)
      • 11. Sudtharalingam, S., Hawkes, A.D., Green, T.C.: ‘Feasibility of domestic micro combined heat and power units with real time pricing’. IEEE Power & Energy Society General Meeting, Minneapolis, USA, July 2010.
    8. 8)
    9. 9)
    10. 10)
      • 20. Available at http://www.iea.org, accessed March 2013.
    11. 11)
      • 26. ‘Tracking industrial energy efficiency and CO2 emissions’. International Energy Agency, Paris, 2007.
    12. 12)
      • 23. Pihala, H.(VTT Technical Research Centre of Finland): ‘Demand response potential assessment in Finnish large-scale industry’. Demand Response Workshop, Helsinki, April 2005.
    13. 13)
      • 5. Balijepalli, V.S.K.M., Pradhan, V., Khaparde, S.A., Shereef, R.M.: ‘Review of demand response under smart grid paradigm’. Proc. IEEE PES Innovative Smart Grid Technologies, Kerala, India, December 2011, pp. 236243.
    14. 14)
      • 9. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: ‘Agent-based control for decentralised demand side management in the smart grid’. Proc. Tenth Int. Conf. Autonomous Agents and Multiagent Systems, Taipei, Taiwan, May 2011, pp. 512.
    15. 15)
      • 24. McKane, A.T., Piette, M.A., Faulkner, D., et al: ‘Opportunities, barriers and actions for industrial demand response in California’. Technical Report, LBNL-1335E, Lawrence Berkeley National Laboratory, January 2008.
    16. 16)
      • 16. Rodriguez Villagarcia, C.(Red Eléctrica de España): ‘Desarrollo de gestión de demanda orientada a la eficiencia conjunta de los procesos suministro-consumo de la electricidad’. Second forum in Madrid about DSO, October 2005.
    17. 17)
    18. 18)
      • 21. Pooley, M., Ward, J., Owen, G.: ‘What demand side services could customers offer in 2010? Industry electricity demand’. Sustainability First, Interim Report-Paper 3, March 2012.
    19. 19)
      • 19. Nordman, B.(Lawrence Berkeley National Laboratory): ‘The case ‘against’ the smart grid’. CITRIS I4E seminars. Banatao Institute. October 2, 2009. Available at http://www.youtube.com/watch?v=NwkSw-PqqTg, accessed March 2013.
    20. 20)
      • 32. Available at http://www.niwa.co.nz/our-science/ei/research-projects/synthetic-wind-data, accessed March 2013.
    21. 21)
      • 2. Dany, G.: ‘Power reserve in interconnected systems with high wind power production’. Proc. IEEE Power Tech, Porto, Portugal, 2001.
    22. 22)
      • 27. ‘Deploying large-scale polygeneration in industry. D – Ploy work package 2. Heat loads and polygeneration applications’. Intelligent Energy – Europe, August 2008.
    23. 23)
      • 12. De Rijcke, S., Driesen, J., Belmans, R.: ‘Balancing wind power with demand-side response’. University of Leuven, March 2010.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 4. Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M., Skea, J.: ‘The costs and impacts of intermittency: an assessment of the evidence on the costs and impacts on intermittent generation on the British electricity network’ (UK Energy Research Centre, London, 2006).
    29. 29)
    30. 30)
      • 22. Jung, S., Rhomberg, W.(Brimatech Services GmbH): ‘Feedback on demand response from selected industries’. Int. European Demand Response Center Workshop, Graz, February 2012.
    31. 31)
      • 30. Yoshihara, T., Yokoyama, A., Imanaka, M., et al: ‘A new method for securing regulating capacity for load frequency control using seawater desalination plant in small island power system’. Proc. Int. Conf. Power System Technology, Hangzhou, China, October 2010.
    32. 32)
      • 31. Ben Ali, I., Turki, M., Belhadj, J., Roboam, X.: ‘Energy management of a reverse osmosis desalination process powered by renewable energy sources’. Proc. 16th IEEE Mediterranean Electrotechnical Conf., Tunisia, March 2012, pp. 800805.
    33. 33)
      • 3. Smith, J.C., De Meo, E.A., Parsons, B., Milligan, M.: ‘Wind power impacts on electric power system operating costs: summary and perspective on work to date’. Available at http://www.uwig.org/windpower2004.pdf, accessed March 2013.
    34. 34)
      • 25. Available at http://www.eia.gov/emeu/mecs/iab98/index.html, accessed March 2013.
    35. 35)
      • 14. Heffner, G., Goldman, C., Kirby, B., Kintner-Meyer, M.: ‘Loads providing ancillary services: review of international experience’. Report, LBNL-62701, Lawrence Berkeley National Laboratory, May 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0260
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0260
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading