access icon free Adaptive neuro-fuzzy based solar cell model

The modelling of photovoltaic (PV) solar cells using a hybrid adaptive neuro-fuzzy inference system (ANFIS) algorithm is presented. It is based on the decomposition of the cell output current into photocurrent and junction current. The photocurrent is linearly dependent on solar irradiance and cell temperature; consequently, its analytical computation is done easily. However, the junction current is highly non-linear and depends on cell voltage and temperature. Therefore, its analytical computation is complicated and the manufacturers do not supply any information about this parameter. Moreover, there is no way to measure it physically. Therefore, it is proposed to use the ANFIS algorithm as a powerful technique in order to estimate this current and reconstruct the output PV cell current using the photocurrent. The model validation is based on the gradient descent and chain rule applied to a set of data different than the one used for training process. The advantage of the proposed model is that only one climatic parameter is used as the input to the ANFIS algorithm, which makes it less sensitive to climatic variations.

Inspec keywords: solar cells; fuzzy reasoning; power engineering computing; photoconductivity

Other keywords: solar irradiance; photovoltaic solar cells; junction current; photocurrent; hybrid adaptive neuro-fuzzy inference system; photovoltaic cell current; gradient descent method; adaptive neuro-fuzzy based solar cell model; ANFIS algorithm; current estimation; model validation

Subjects: Photoelectric conversion; solar cells and arrays; Photoelectric devices; Solar cells and arrays; Knowledge engineering techniques; Power engineering computing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 42. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: ‘Neuro-Fuzzy and soft computing’ (Prentice-Hall, 1997).
    6. 6)
    7. 7)
      • 8. Salam, Z., Ishaque, K., Taheri, H.: ‘An improved two-diode photovoltaic model for PV system’. Joint Int. Conf. Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India, India, 20–23 December 2010, pp. 15.
    8. 8)
    9. 9)
      • 25. Shoorehdeli, A., Teshnehlab, M., Sedigh, A.K.: ‘A novel training algorithm in ANFIS structure’. American Control Conference Minneapolis, USA, 14–16 June 2006, pp. 50595064.
    10. 10)
      • 21. Ali, A.N.A., Saied, M.H., Mostafa, M.Z., Abdel-Moneim, T.M.A.: ‘A survey of maximum PPT techniques of PV systems’. IEEE Energytech, Cleveland, USA, 29–31 May 2012, pp. 117.
    11. 11)
      • 19. Chikh, A., Chandra, A.: ‘An optimum method for maximum power point tracking in photovoltaic systems’. IEEE Power & Energy Society General Meeting, Detroit, Michigan, USA, 24–28 July 2011, pp. 15.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 29. Singh, M., Chandra, A.: ‘Adaptive neuro-fuzzy control of renewable interfacing inverter to maintain smooth power flow and non-linear unbalanced load compensation simultaneously’. Electrical Power And Energy Conference, Canada, 22–23 October 2009, pp. 16.
    16. 16)
    17. 17)
    18. 18)
      • 17. Moldovan, N., Picos, R., Garcia-Moreno, E.: ‘Parameter extraction of a solar cell compact model using genetic algorithms’. Spanish Conference on Electron Devices, Spain, 11–13 February 2009, pp. 379382.
    19. 19)
      • 5. Masters, G.M.: ‘Renewable and efficient electric power systems’ (Wiley, 2004).
    20. 20)
      • 43. http://www.aleo-solar.de/, accessed January 2011.
    21. 21)
    22. 22)
    23. 23)
      • 26. Dondi, D., Brunelli, D., Benini, L., Pavan, P., Bertacchini, A., Larcher, L.: ‘Photovoltaic cell modeling for solar energy powered sensor networks’. Second Int. Workshop on Advances in Sensors and Interface, IWASI 2007, Bari, 26–27 June 2007, pp. 16.
    24. 24)
    25. 25)
      • 33. Mitra, P., Maulik, S., Chowdhury, S.P., Chowdhury, S.: ‘ANFIS based automatic voltage regulator with hybrid learning algorithm’. 42nd Int. Universities Power Engineering Conference (UPEC 2007), Brighton, 4–6 September 2007, pp. 397401.
    26. 26)
    27. 27)
      • 23. International Standard ‘IEC 60891 Ed.2’: ‘Procedures for temperature and irradiance corrections to measured I–V characteristics of crystalline silicon photovoltaic devices’. International Electrotechnical Commission, 2009.
    28. 28)
      • 22. Townsend, T.U.: ‘A method for estimating the long-term performance of direct-coupled photovoltaic systems’. Master of Science Thesis, (1989), Chapter 2, University of Wisconsin, Madison, USA, pp. 17111.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 44. http://www.solarwatt.de/, accessed January 2012.
    33. 33)
      • 16. Xiao, W., Dunford, W.G., Capel, A.: ‘A novel modeling method for photovoltaic cells’. 35th Annual IEEE Power Electronics Specialists Conference, Canada, 2004, pp. 19501956.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 20. Chikh, A., Chandra, A.: ‘Optimization and control of a photovoltaic pumping systems’. Electrical Power and Energy Conference, Canada, 22–23 October 2009, pp. 16.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • 39. Rezaeeian, A., Yousefi-Koma, A., Shasti, B., Doosthoseini, A.: ‘ANFIS modeling and feedforward control of shape memory alloy actuators’, Int. J. Math. Models Meth. Appl. Sci., 2008, 2, (2), pp. 228235.
    44. 44)
      • 2. Peftitsis, D., Adamidis, G., Bakas, P., Balouktsis, A.: ‘Photovoltaic system MPP tracker investigation and implementation using DSP engine and buck-boost DC–DC converter’. Thirteenth Power Electronics and Motion Control Conference, Poznan, 2008, pp. 18401846.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0183
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0183
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading