Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis of dynamics of fluid power drive-trains for variable speed wind turbines: parameter study

In the pursuit of making wind energy technology more economically attractive, fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This study presents a dynamic model of a fluid power transmission for the variable speed wind turbines and shows a parametric study on the dynamic behaviour below the rated wind speed. A pressure control strategy is proposed to achieve a variable speed operation of the rotor while using a fixed speed generator. The rotor of a five megawatt reference turbine is used to perform the time domain simulations. Different values of the hydraulic line length and transmission efficiency are considered for the same wind conditions and the results are compared with the response of the reference gearbox drive train. The results show that the amount of oil in the hydraulic drivetrain has an important influence on the first natural frequency of the transmission and the pipeline dynamics become more relevant for the longer transmission lines. Lowering the volumetric efficiency of the hydraulic motor leads to an additional damping of the pressure fluctuation, however, its influence is minor and unlikely to be advantageous when compared with the power loss.

References

    1. 1)
      • 3. BTM Consult, ApS: World Market Update 2011, Forecast 2012–2016. International Wind Energy Development, March 2012, pp. 141146.
    2. 2)
    3. 3)
    4. 4)
      • 13. Merritt, H.E.: ‘Hydraulic control systems’. 1967, ISBN 0471596175.
    5. 5)
      • 11. Schlösser, W.M.J.: ‘Ein mathematisches Modell für Verdrängerpumpen und -motoren’, Ölhydraulik und Pneumatik, 1961, 5/4, pp. 122130.
    6. 6)
      • 4. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: ‘Definition of a 5-MW reference wind turbine for offshore system development’. NREL/TP-500-38060, Golden, CO: National Renewable Energy Laboratory, 2006.
    7. 7)
      • 3. BTM Consult, ApS: World Market Update 2011, Forecast 2012–2016. International Wind Energy Development, March 2012, pp. 141146.
    8. 8)
    9. 9)
      • 6. Hagglunds Drives, http://www.hagglunds.com/, accessed July 2012.
    10. 10)
      • 12. Murrenhoff, H.: ‘Grundlagen der Fluidtechnic, Teil 1: Hydraulik’. Reihe Fluidtechnik 2001, Institut für fluidtechnische Antriebe und Steuerungen.
    11. 11)
      • 1. Artemis Intelligent Power, http://www.artemisip.com/, accessed July 2012.
    12. 12)
      • 8. Diepeveen, N.F.B., Jarquin Laguna, A.: ‘Dynamic modeling of fluid power transmissions for wind turbines’. Proc. EWEA Offshore, Amsterdam, Netherlands, November 2011.
    13. 13)
      • 17. Bianchi, F., Battista, H., Mantz, H.: ‘Wind turbine control systems- principles, modelling and gain scheduling design’. Advances in Industrial Control, Springer, 2007.
    14. 14)
      • 9. Rydberg, K.E.: ‘Efficiencies for variable hydraulics pumps and motors- Mathematical models and operation conditions’. Linköpings University, Department of Management and Engineering, 2009.
    15. 15)
      • 18. Bossanyi, E.A.: ‘Controller for 5MW reference turbine’. Integrated Wind Turbine Design – UpWind Report, 11593/BR/04, July 2009.
    16. 16)
      • 19. Kooijman, H.J.T., Lindenburg, C., Winkelaar, D., van der Hooft, E.L.: ‘DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS’. DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports [CD-ROM], DOWEC 10046_009, ECN-CX-01-135, Petten, the Netherlands: Energy Research Center of the Netherlands, September 2003.
    17. 17)
      • 7. Bossanyi, E.A.: ‘Bladed user manual’ (Garrad Hassan, Bristol, 2002).
    18. 18)
    19. 19)
      • 20. Fleming, P.A., van Wingerden, J.W., Scholbrock, A.K., van der Veen, G.J., Wright, A.D.: ‘Field testing of a wind turbine drivetrain/tower damper using advanced design and validation techniques’. Accepted for the American Control Conf., Washington, DC, 2013.
    20. 20)
      • 2. ChapDrive, http://www.chapdrive.com/, accessed July 2012.
    21. 21)
      • 10. Wilson, W.E.: ‘Mathematical models in fluid power engineering’ (Hydraul. Pneum. Power, 1967).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0134
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address