Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Generalised model of a photovoltaic panel

The modelling of photovoltaic (PV) solar panels requires electrical parameters which are dependent on the manufacturing materials and their physical properties. Manufacturers typically do not disclose detailed physical properties of the PV module, except for some electrical quantities such as open circuit voltage (V oc), short-circuit current (I sc), maximum power point voltage (V m), maximum power point current (I m) and maximum power (P M). However, to model the PV panels comprehensively, it is necessary to determine other physical parameters, e.g., series resistance of PV cell (R s), shunt resistance of PV cell (R Sh) and diode ideality factor (n). This paper presents a generalised mathematical model of a PV panel utilising only the quantities provided in manufacturer's datasheet. The proposed modelling technique determines all the PV panel parameters without any explicit repetitive iteration. Although the developed model is general and can be implemented on any software platform, its implementation is demonstrated on a commercial electromagnetic transients simulation software electro magnetic transient including direct current power systems computer aided design. The electrical parameters obtained from the proposed PV panel model are validated for six different commercially available PV panels from their datasheet values and also from measurements provided by National Institute of Standards and Technology for solar irradiation and temperature at nonstandard test conditions.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 40. Bowden, S., Rohatgi, A.: ‘Rapid and accurate determination of series resistance and fill factor losses in industrial silicon solar cells’, Georgia Institute of Technology. Available at http://www.smartech.gatech.edu/jspui/bitstream/1853/26165/1/Munich-Bowden2.pdf, 14 July 2012.
    6. 6)
    7. 7)
    8. 8)
      • 25. Campbell, R.C.: ‘A circuit-based photovoltaic array model for power system studies’, Available at http://www.ee.washington.edu/research/sesame/publication/Conference/2007/Campbell_PWL_PV_Model_NAPS2007.pdf, 17 July 2010.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 9. Jensen, M., Louie, R., Etezadi-Amoli, M., Fadali, M.S.: ‘Model and simulation of a 75 kW PV solar array’. Proc. Transmission and Distribution Conf. Exposition, New Orleans, Louisiana, USA, 2010, pp. 15.
    15. 15)
      • 10. Schonardie, M.F., Martins, D.C.: ‘Three-phase grid-connected photovoltaic system with active and reactive power control using dq0 transformation’. Proc. Power Electronics Specialists Conf., 2008, pp. 12021207.
    16. 16)
      • 4. http://www.us.sunpowercorp.com, http://www.solarplaza.com/top10-crystalline-module-efficiency/#sunpower, accessed September 2011, Sunpower E20/333 and E20/327 Solar Panels Datasheet, Document # 001-65483 Rev*B/A4_EN.
    17. 17)
      • 32. Gottschalg, R., Rommel, M., Infield, D.G., Kearney, M.J.: ‘The influence of the measurement environment on the accuracy of the extraction of the physical parameters of solar cells’, Meas. Sci. Technol., 1999, 10, pp. 796804 (doi: 10.1088/0957-0233/10/9/306).
    18. 18)
      • 35. Vasic, A., Vujisic, M., Loncar, B., Osmokrovic, P.: ‘Aging of solar cells under working conditions’, J. Optoelectron. Adv. Mater., 2007, 9, (6), pp. 18431846.
    19. 19)
      • 39. Bayhan, H., Kavasoglu, A.S.: ‘Exact analytical solution of the diode ideality factor of a pn junction device using lambert W-function model’, Turk. J. Phys., 2007, 31, (1), pp. 710.
    20. 20)
      • 24. Xue, J., Yin, Z., Wu, B., Peng, J.: ‘Design of PV array model based on EMTDC/PSCAD’. Proc. IEEE Asia-Pacific Power and Energy Engineering Conf., 2009, pp. 15.
    21. 21)
      • 27. Aernouts, T., Geens, W., Poortmans, J., Heremans, P., Borghs, S., Mertens, R.: ‘Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions’, Thin Solid Films, 2002, 403–404, pp. 297301 (doi: 10.1016/S0040-6090(01)01584-X).
    22. 22)
      • 38. Mialhe, P., Charles, J.P., Khoury, A., Bordure, G.: ‘The diode quality factor of solar cells under illumination’, J. Appl. Phys., 1986, 19, (3), pp. 483492.
    23. 23)
      • 21. Gray, J.L.: ‘The physics of the solar cell’, in Luque, A., Hegedus, S. (Eds.): ‘Handbook of photovoltaic science and engineering’. (John Wiley & Sons, Inc., 2003), pp. 102105.
    24. 24)
      • 17. Attivissimo, F., Di, N., Savino, A., Spadavecchia, M.: ‘Uncertainty analysis in photovoltaic cell parameter estimation’, IEEE Trans. Instrum. Meas., 2012, 61, (5), pp. 13341342 (doi: 10.1109/TIM.2012.2183429).
    25. 25)
      • 2. http://www.ldksolar.com accessed February 2013, Polycrystalline Modules LDK-230P-235P-20 Datasheet, V1 February 2012, LDK Solar Limited.
    26. 26)
      • 31. Veissid, N., Bonnet, D., Richter, H.: ‘Experimental investigation of the double exponential model of a solar cell under illuminated uncertainties in the current, voltage and temperature values’, Solid State Electron., 1995, 38, (11), pp. 19371943 (doi: 10.1016/0038-1101(95)00017-N).
    27. 27)
      • 29. Molina, M.G., Mercado, P.E.: ‘Modeling and control of grid-connected photovoltaic energy conversion system used as a dispersed generator’. Proc. 2008 IEEE PES Transmission and Distribution Conf. Exposition, Latin America, pp. 18.
    28. 28)
      • 34. Smith, M.R., Jordan, D.C., Kurtz, S.R.: ‘Outdoor PV module degradation of current-voltage parameters’. Proc. 2012 World Renewable Energy Forum, Denver, Colorado, pp. 17.
    29. 29)
      • 3. http://www.ldksolar.com accessed February 2013, Monocrystalline Modules LDK-240D-245D-250D-20 Datasheet, V1 February 2012, LDK Solar Limited.
    30. 30)
      • 18. Grandi, G., Sancineto, G.: ‘Hardware modeling of photovoltaic panels’. Proc. ISES Solar World Congress, Göteborg, Sweden, 2003.
    31. 31)
      • 14. Sera, D., Teodorescu, R., Rodriguez, P.: ‘PV panel model based on datasheet values’. Proc. IEEE Int. Symp. Industrial Electronics, 2007, pp. 23922396.
    32. 32)
      • 33. http://www.pvresources.com/Introduction/SolarCells.aspx, accessed July 2012, Solar Cells.
    33. 33)
      • 5. http://www.sanyo-solar.eu/en, http://www.solarplaza.com/top10-crystalline-module-efficiency/#sunpower, accessed February 2013, Sanyo HIT Photovoltaic Module HIT-N240SE10, HIT-N235SE10, HIT-N230SE10 Datasheet.
    34. 34)
      • 20. Gottschalg, R., Rommel, M., Infield, D.G., et al: ‘Comparison of different methods for the parameter determination of the solar cell double exponential equation’. Proc. 14th EUPVSEC, 1997, pp. 321324.
    35. 35)
      • 13. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208 (doi: 10.1109/TPEL.2009.2013862).
    36. 36)
      • 40. Bowden, S., Rohatgi, A.: ‘Rapid and accurate determination of series resistance and fill factor losses in industrial silicon solar cells’, Georgia Institute of Technology. Available at http://www.smartech.gatech.edu/jspui/bitstream/1853/26165/1/Munich-Bowden2.pdf, 14 July 2012.
    37. 37)
      • 8. Xiao, W., Dunford, W.G., Capel, A.: ‘A novel modeling method for photovoltaic cells’. Proc. 35th IEEE Power Electronics Specialist Conf., 2004, pp. 19501956.
    38. 38)
      • 26. Chan, D.S.H., Phang, J.C.H.: ‘Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I − V characteristics’, IEEE Trans. Electron Devices, 1987, ED-34, (2), pp. 286293 (doi: 10.1109/T-ED.1987.22920).
    39. 39)
      • 36. Vasic, A., Stojanovic, M., Osmokrovic, P., Stojanovic, N.: ‘The influence of ideality factor on fill factor and efficiency of solar cells’, Mater. Sci. Forum, 2000, 352, pp. 241246 (doi: 10.4028/www.scientific.net/MSF.352.241).
    40. 40)
      • 22. Wang, B., Huang, T., Jiang, B., Dong, X., Bo, Z.: ‘Dynamic modeling and transient fault analysis of feeder in distribution system with MW PV substation’. Proc. 45th Int. Universities Power Engineering Conf., 2010, pp. 15.
    41. 41)
      • 15. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Modeling and circuit-based simulation of photovoltaic arrays’. Proc. IEEE Brazilian Power Electronics Conf., 2009, pp. 12441254.
    42. 42)
      • 16. Chang, C., Zhu, J., Tsai, H.: ‘Model-based performance diagnosis for PV systems’. Proc. SICE Annual Conf., 2010, pp. 21392145.
    43. 43)
      • 19. Sandrolini, L., Artioli, M., Reggiani, U.: ‘Numerical method for extraction of photovoltaic module double-diode model parameters through cluster analysis’, Appl. Energy, 2010, 87, (2), pp. 442451 (doi: 10.1016/j.apenergy.2009.07.022).
    44. 44)
      • 12. Gonzalez-Longatt, F.M.: ‘Model of photovoltaic module in Matlab™’, II CIBELEC, Puerto La Cruz, Venezuela, December 2005, pp. 15.
    45. 45)
      • 6. Liu, S., Dougal, R.A.: ‘Dynamic multiphysics model for solar array’, IEEE Trans. Energy Convers., 2002, 17, (2), pp. 285294 (doi: 10.1109/TEC.2002.1009482).
    46. 46)
      • 23. Gupta, R., Gupta, G., Kastwar, D., Hussain, A., Ranjan, H.: ‘Modeling and design of MPPT controller for a PV module using PSCAD/EMTDC’. Proc. IEEE PES Innovative Smart Grid Technologies Conf. Europe, 2010, pp. 16.
    47. 47)
      • 11. Walker, G.R.: ‘Evaluating MPPT converter topologies using a MATLAB PV model’, J. Electr. Electron. Eng., 2001, 21, (1), pp. 4955.
    48. 48)
      • 7. Gow, J.A., Manning, C.D.: ‘Development of a photovoltaic array model for use in power electronics simulation studies’. IEE Proc. Electric Power Applications, Loughborough University of Technology, March 1999, vol. 146, no 2, pp. 193200.
    49. 49)
      • 37. Sen, K., Tyagi, B.P.: ‘Diode quality factor in polycrystalline solar cell’, J. Appl. Phys., 1984, 56, (4), pp. 12401241 (doi: 10.1063/1.334059).
    50. 50)
      • 28. De Soto, W., Klein, S.A., Beckman, W.A.: ‘Improvement and validation of a model for photovoltaic array performance’, Solar Energy, 2006, 80, pp. 7888 (doi: 10.1016/j.solener.2005.06.010).
    51. 51)
      • 25. Campbell, R.C.: ‘A circuit-based photovoltaic array model for power system studies’, Available at http://www.ee.washington.edu/research/sesame/publication/Conference/2007/Campbell_PWL_PV_Model_NAPS2007.pdf, 17 July 2010.
    52. 52)
      • 30. Alquthami, T., Ravindra, H., Faruque, M.O., Steurer, M., Baldwin, T.: ‘Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E’. Proc. 2010 North American Power Symp., pp. 18.
    53. 53)
      • 1. http://www.firstsolar.com/Downloads/pdf/Datasheet_s2_NA.pdf, accessed April 2011, FS series 2 PV Module Datasheet, Document ID: PD-5-401-02-NA June 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2013.0094
Loading

Related content

content/journals/10.1049/iet-rpg.2013.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address