Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cost and losses associated with offshore wind farm collection networks which centralise the turbine power electronic converters

Costs and losses have been calculated for several different network topologies, which centralise the turbine power electronic converters, in order to improve access for maintenance. These are divided into star topologies, where each turbine is connected individually to its own converter on a platform housing many converters, and cluster topologies, where multiple turbines are connected through a single large converter. Both AC and DC topologies were considered, along with standard string topologies for comparison. Star and cluster topologies were both found to have higher costs and losses than the string topology. In the case of the star topology, this is due to the longer cable length and higher component count. In the case of the cluster topology, this is due to the reduced energy capture from controlling turbine speeds in clusters rather than individually. DC topologies were generally found to have a lower cost and loss than AC, but the fact that the converters are not commercially available makes this advantage less certain.

References

    1. 1)
      • 24. Hammond, P.W.: ‘A new approach to enhance the power quality for medium voltage drives’, IEEE Trans. Appl. Ind., 1997, 33, (1), pp. 201208.
    2. 2)
      • 3. Zhang, T., Zain, A.: ‘Modular converter system reliability and performance in design’. Second IEEE Int. Symp. on Power Electronics for Distributed Generation Systems, 2010.
    3. 3)
      • 2. van Bussel, G.J.W., Zaaijer, M.B.: ‘Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study’. IMarEst, MAREC Conf., Newcastle Upon Tyne, March 2001.
    4. 4)
      • 18. Parker, M.A., Anaya-Lara, O.: ‘An evaluation of collection network designs which eliminate the turbine converter’. European Wind Energy Association Conf., EWEA2012.
    5. 5)
      • 1. Spinato, F., Tavner, P.J., van Bussel, G.J.W., Koutoulakos, E.: ‘Reliability of wind turbine sub-assemblies’, IET Renew. Power Gener., 2009, 3, (4), pp. 387401 (doi: 10.1049/iet-rpg.2008.0060).
    6. 6)
      • 5. Ng, C.H., Parker, M.A., Ran, L., Tavner, P.J., Bumby, J.R., Spooner, E.: ‘A multilevel modular converter for a large, light weight wind turbine generator’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 10621074 (doi: 10.1109/TPEL.2008.921191).
    7. 7)
      • 19. Li, H., Chen, Z., Polinder, H.: ‘Research report on numerical evaluation of various variable speed wind generator systems’. Project UpWind, Technical Report, 2006.
    8. 8)
      • 22. Polinder, H., van der Pijl, F.F.A., de Vilder, G.-J., Tavner, P.J.: ‘Comparison of direct-drive and geared generator concepts for wind turbines’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 725733 (doi: 10.1109/TEC.2006.875476).
    9. 9)
      • 10. McMillan, D., Ault, G.W.: ‘Techno-economic comparison of operational aspects for direct drive and gearbox-driven wind turbines’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 191198 (doi: 10.1109/TEC.2009.2032596).
    10. 10)
      • 21. HVDC light submarine and land power cables’, ABB, 2006 [Online] Available at www.abb.com/cables.
    11. 11)
      • 6. Zahn, C., Smith, C., Crane, A., Bullock, A., Grieve, D.: ‘DC transmission and distribution system for a large offshore wind farm’. Ninth IET Int. Conf. on AC and DC Power Transmission, London, 2010.
    12. 12)
      • 17. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: An overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602 (doi: 10.1109/TPEL.2008.2008441).
    13. 13)
      • 20. Offshore electricity transmission: Possible options for the future’, National Grid Energy Transmission PLC, Technical Report, 2011[Online] Available at http://www.nationalgrid.com/uk/Electricity/O_shoreTransmission/ODIS/CurrentStatement/.
    14. 14)
      • 16. Crine, J.-P.: ‘Electrical, chemical and mechanical processes in water treeing’, IEEE Trans. Dielectr. Electr. Insul., 1998, 5, (5), pp. 681694 (doi: 10.1109/94.729690).
    15. 15)
      • 13. Elliott, D.W., Finney, S.J., Booth, C.: ‘Single converter interface for a cluster of wind turbines’. IET Conf. on Renewable Power Generation (RPG2011), 2011.
    16. 16)
      • 14. de Prada-Gil, M., Gomis-Bellmunt, O., Sumper, A., Bergas-Jane, J.: ‘Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects’, Energy, 2012, 37, pp. 455468 (doi: 10.1016/j.energy.2011.11.010).
    17. 17)
      • 4. Eicher, M., Maibach, P., Faulstick, A.: ‘Full size voltage converters for 5 MW offshore wind power generators’. European Wind Energy Conf., EWEC2008, 2008.
    18. 18)
      • 15. XLPE submarine cable systems’, ABB, 2010 [Online] Available at www.abb.com/cables.
    19. 19)
      • 8. Prasai, A., Yim, J.-S., Divan, D., Bendre, A., Suk, S.-K.: ‘A new architecture for offshore wind farms’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 11981204 (doi: 10.1109/TPEL.2008.921194).
    20. 20)
      • 12. Jovcic, D., Strachan, N.: ‘Offshore wind farm with centralised power conversion and DC interconnection’, IET Gener. Transm. Dsitrib., 2009, 3, (6), pp. 586595 (doi: 10.1049/iet-gtd.2008.0372).
    21. 21)
      • 23. Hansen, H., Helle, L.L., Blaabjerg, E., et al: ‘Conceptural survey of generators and power electronics for wind turbines’, Technical Report, Risø National Laboratory, Roskilde, Denmark, 2001.
    22. 22)
      • 11. Quinonez-Varela, G., Ault, G.W., Anaya-Lara, O., McDonald, J.R.: ‘Electrical collector system options for large offshore wind farms’, IET Renew. Power Gener., 2007, 1, (2), pp. 107114 (doi: 10.1049/iet-rpg:20060017).
    23. 23)
      • 9. Dogger bank wind farm factsheet’. Forewind, Technical Report, 2012[Online] Available at http://www.forewind.co.uk/downloads/fact-sheets.html.
    24. 24)
      • 7. Lundberg, S.: ‘Performance comparison of wind park configurations’, Technical Report, Chalmers University of Technology, Goteborg, Sweden, 2003.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0262
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address