access icon free Energy storage for active network management on electricity distribution networks with wind power

Increasing amounts of variable renewable generation are likely to enter the UK's energy systems in the near future. To accommodate this generation onto electricity networks, the concept of active network management (ANM) has become a significant area of research interest. Network connected energy storage systems (ESS) are considered here as a means to actively control the network in order to increase the amount of generation that is possible to connect to a network. ESS is one of several potential methods of ANM, but has not been widely researched in this context. In this study, the ability of the ESS to increase the amount of wind energy accepted onto a network is assessed over a range of roundtrip storage efficiencies. An analysis is then conducted to determine the cost of energy produced through the ESS for a number of scenarios. The results show that the ESS is able to increase the energy accepted onto a distribution network, with the efficiency of the ESS, energy storage capacity, windfarm size, network losses and network characteristics being important in determining the relative effectiveness of the ESS and the cost at which electricity is produced.

Inspec keywords: energy storage; costing; power system management; power distribution economics; wind power plants

Other keywords: ANM concept; electricity distribution networks; network loss; wind energy; active network management; wind power; network-connected ESS; roundtrip storage efficiency; network characteristics; variable renewable generation; network-connected energy storage systems; windfarm size; energy cost; energy storage capacity

Subjects: Wind power plants; Power system management, operation and economics; Distribution networks

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 2. A technical review and assessment of active network management infrastructures and practices’. Report toU.K. Department of Trade and Industry (DTI), EA Technology, 2006.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 28. Carr, S.J.W.: ‘The integration of hydrogen storage with embedded renewable energy storage’. PhD, University of Glamorgan, 2010.
    26. 26)
    27. 27)
    28. 28)
      • 6. Ochoa, L.F., Dent, C.J., Harrison, G.P.: ‘Distribution network capacity assessment: variable DG and active networks’, IEEE Trans. Power Syst., 2010, 25, pp. 8795 (doi: 10.1109/TPWRS.2009.2031223).
    29. 29)
      • 15. Korpas, M., Greiner, C.J.: ‘Opportunities for hydrogen production in connection with wind power in weak grids’, Renew. Energy, 2008, 33, pp. 11991208 (doi: 10.1016/j.renene.2007.06.010).
    30. 30)
      • 5. Djapic, P., Ramsay, C., Pudjianto, D., et al: ‘Taking an active approach’, IEEE Power Energy Mag., 2007, 5, pp. 6877 (doi: 10.1109/MPAE.2007.376582).
    31. 31)
      • 13. Strunz, K., Brock, E.K.: ‘Stochastic energy source access management: infrastructure-integrative modular plant for sustainable hydrogen-electric co-generation’, Int. J. Hydrog. Energy, 2006, 31, pp. 11291141 (doi: 10.1016/j.ijhydene.2005.10.006).
    32. 32)
      • 24. http://www.pserc.cornell.edu/matpower/, ‘MATPOWER’, ed, 2006.
    33. 33)
      • 2. A technical review and assessment of active network management infrastructures and practices’. Report toU.K. Department of Trade and Industry (DTI), EA Technology, 2006.
    34. 34)
      • 18. Black, M., Strbac, G.: ‘Value of bulk energy storage for managing wind power fluctuations’, IEEE Trans. Energy Convers., 2007, 22, pp. 197205 (doi: 10.1109/TEC.2006.889619).
    35. 35)
      • 17. Suvire, G.O., Mercado, P.E.: ‘Active power control of a flywheel energy storage system for wind energy applications’, IET Renew. Power Gener., 2012, 6, pp. 916 (doi: 10.1049/iet-rpg.2010.0155).
    36. 36)
      • 31. Tande, Olav, J., Hunter, R.: ‘Estimation of cost of energy from wind energy conversion systemsIEA Recommended Practices for Wind Iurbine Testing, (1994, 2nd edn.).
    37. 37)
      • 36. Brunetto, C., Tina, G.: ‘Optimal hydrogen storage sizing for wind power plants in day ahead electricity market’, IET Renew. Power Gener., 2007, 1, pp. 220226 (doi: 10.1049/iet-rpg:20070040).
    38. 38)
      • 34. Schoenung, S.M., Hassenzahl, W.V.: ‘Long against short-term energy storage technologies analysis: a life cycle cost study’ (C. Sandia National Laboratories, 2003, edn.), vol. SAND2003-2783.
    39. 39)
      • 12. El-Fouly, T.H.M., Zeineldin, H.H., El-Saadany, E.F., Salama, M.M.A.: ‘Impact of wind generation control strategies, penetration level and installation location on electricity market prices’, IET Renew. Power Gener., 2008, 2, pp. 162169 (doi: 10.1049/iet-rpg:20070082).
    40. 40)
      • 33. Dufo-Lopez, R., Bernal-Agustin, J.L., Dominguez-Navarro, J.A.: ‘Generation management using batteries in wind farms: economical and technical analysis for Spain’, Energy Policy, 2009, 37, pp. 126139 (doi: 10.1016/j.enpol.2008.08.012).
    41. 41)
      • 7. Currie, R.A.F., Ault, G.W., Foote, C.E.T., McDonald, J.R.: ‘Active power-flow management utilising operating margins for the increased connection of distributed generation’, IET Gener. Transm. Distrib., 2007, 1, pp. 197202 (doi: 10.1049/iet-gtd:20060035).
    42. 42)
      • 1. ‘UK Energy White Paper: meeting the energy challenge’, BERR, 2007.
    43. 43)
      • 25. Optimization Toolbox for use with Matlab: The Mathworks, Inc.
    44. 44)
      • 29. Morales, J.M., Minguez, R., Conejo, A.J.: ‘A methodology to generate statistically dependent wind speed scenarios’, Appl. Energy, 2010, 87, pp. 843855 (doi: 10.1016/j.apenergy.2009.09.022).
    45. 45)
      • 8. Currie, R.A.F., Ault, G.W., Fordyce, R.W., MacLeman, D.F., Smith, M., McDonald, J.R.: ‘Actively managing wind farm power output’, IEEE Trans. Power Syst., 2008, 23, pp. 15231524 (doi: 10.1109/TPWRS.2008.926722).
    46. 46)
      • 9. Vovos, P.N., Kiprakis, A.E., Wallace, A.R., Harrison, G.P.: ‘Centralized and distributed voltage control: impact on distributed generation penetration’, IEEE Trans. Power Syst., 2007, 22, pp. 476483 (doi: 10.1109/TPWRS.2006.888982).
    47. 47)
      • 16. Barton, J.P., Infield, D.G.: ‘Energy storage and its use with intermittent renewable energy’, IEEE Trans. Energy Convers., 2004, 19, pp. 441448 (doi: 10.1109/TEC.2003.822305).
    48. 48)
      • 28. Carr, S.J.W.: ‘The integration of hydrogen storage with embedded renewable energy storage’. PhD, University of Glamorgan, 2010.
    49. 49)
      • 19. Yuan, Y., Li, Q., Wang, W.: ‘Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming’, IET Renew. Power Gener., 2011, 5, pp. 194201 (doi: 10.1049/iet-rpg.2009.0107).
    50. 50)
      • 26. ‘Long term development statement for western power distribution (South Wales) plc's electricity distribution system’, 2005.
    51. 51)
      • 21. Gabash, A., Pu, L.: ‘Active-reactive optimal power flow in distribution networks with embedded generation and battery storage’, IEEE Trans. Power Syst., 2012, 27, pp. 20262035 (doi: 10.1109/TPWRS.2012.2187315).
    52. 52)
      • 22. Pudjianto, D., Ramsay, C., Strbac, G.: ‘Virtual power plant and system integration of distributed energy resources’, IET Renew. Power Gener., 2007, 1, pp. 1016 (doi: 10.1049/iet-rpg:20060023).
    53. 53)
      • 32. Kaldellis, J.K., Zafirakis, D.: ‘Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency’, Energy, 2007, 32, pp. 22952305 (doi: 10.1016/j.energy.2007.07.009).
    54. 54)
      • 27. http://www.sedg.ac.uk/, ‘UKGDS’, ed, 2007.
    55. 55)
      • 4. Scott, N.C., Atkinson, D.J., Morrell, J.E.: ‘Use of load control to regulate voltage on distribution networks with embedded generation’, IEEE Trans. Power Syst., 2002, 17, pp. 510515 (doi: 10.1109/TPWRS.2002.1007926).
    56. 56)
      • 10. Boehme, T., Wallace, A.R., Harrison, G.P.: ‘Applying time series to power flow analysis in networks with high wind penetration’, IEEE Trans. Power Syst., 2007, 22, pp. 951957 (doi: 10.1109/TPWRS.2007.901610).
    57. 57)
      • 37. ‘Technical Advice Note (TAN) 8: Renewable Energy’ Welsh Assembly Government, 2005. Available at: http://new.wales.gov.uk/topics/planning/policy/tans/tan8/?lang = en.
    58. 58)
      • 3. Liew, S.N., Strbac, G.: ‘Maximising penetration of wind generation in existing distribution networks’. IEE Proc., Generation Transmission and Distribution, May 2002, vol. 149, pp. 256262.
    59. 59)
      • 20. Atwa, Y.M., El-Saadany, E.F.: ‘Optimal allocation of ESS in distribution systems with a high penetration of wind energy’, IEEE Trans. Power Syst., 2010, 25, pp. 18151822 (doi: 10.1109/TPWRS.2010.2045663).
    60. 60)
      • 30. Gao, Y., Billinton, R.: ‘Adequacy assessment of generating systems containing wind power considering wind speed correlation’, IET Renew. Power Gener., 2009, 3, pp. 217226 (doi: 10.1049/iet-rpg:20080036).
    61. 61)
      • 14. McDonald, J.: ‘Adaptive intelligent power systems: active distribution networks’, Energy Policy, 2008, 36, pp. 43464351 (doi: 10.1016/j.enpol.2008.09.038).
    62. 62)
      • 35. Korpas, M., Holen, A.T.: ‘Operation planning of hydrogen storage connected to wind power operating in a power market’, IEEE Trans. Energy Convers., 2006, 21, pp. 742749 (doi: 10.1109/TEC.2006.878245).
    63. 63)
      • 11. Nick, M., Riahy, G.H., Hosseinian, S.H., Fallahi, F.: ‘Wind power optimal capacity allocation to remote areas taking into account transmission connection requirements’, IET Renew. Power Gener., 2011, 5, pp. 347355 (doi: 10.1049/iet-rpg.2010.0196).
    64. 64)
      • 23. Harrison, G.P., Wallace, A.R.: ‘Optimal power flow evaluation of distribution network capacity for the connection of distributed generation’. IEE Proc., Gener. Transm. Distrib., 2005, vol. 152, pp. 115122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2012.0210
Loading

Related content

content/journals/10.1049/iet-rpg.2012.0210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading