http://iet.metastore.ingenta.com
1887

Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study analyses the integration impact of battery energy storage systems (BESSs) on the short-term frequency control in autonomous microgrids (MGs). Short-term frequency stability relates with the primary or speed control level, as defined in the regulations of the classical grids. The focus is on autonomous MGs that dynamically behave similarly to the classical power systems. This is the systems case with classical distributed generators (DGs), but which can also contain renewable energy sources (RESs) in a certain penetration level. During MG islanded operation, the local generators take over most of the frequency control process, by means of their automatic generation control, which include inertia response and primary control. However, RES-based DGs are rarely able to provide grid frequency support, as they lack controllability and usually the power conversion chain does not have the possibility of storing and releasing energy when required by the system. Therefore the need of boosting the MG power reserves by adding energy storage systems is often a requirement. The study highlights the improvement in the MG short-term frequency stability brought by an original BESS control structure enhanced with both inertial response and an adaptive droop characteristic during battery state-of-charge limitations. The conducted analysis is accomplished by adopting aggregated models for the involved control mechanisms. The developed model is analysed in frequency domain, whereas an experimental test bench including a real-time digital simulator with BESS controller in a hardware-in-the-loop structure is used for assessing the system performances.

References

    1. 1)
      • H. Farhangi .
        1. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828 (doi: 10.1109/MPE.2009.934876).
        . IEEE Power Energy Mag. , 1 , 18 - 28
    2. 2)
      • H. Bevrani , A. Ghosh , G. Ledwich .
        2. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2009, 4, (5), pp. 438457 (doi: 10.1049/iet-rpg.2009.0049).
        . IET Renew. Power Gener. , 5 , 438 - 457
    3. 3)
      • M.Q. Wang , H.B. Gooi .
        3. Wang, M.Q., Gooi, H.B.: ‘Spinning reserve estimation in microgrids’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 11641174 (doi: 10.1109/TPWRS.2010.2100414).
        . IEEE Trans. Power Syst. , 3 , 1164 - 1174
    4. 4)
      • J.H. Jeon .
        4. Jeon, J.H., et al: ‘Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29192929 (doi: 10.1109/TPEL.2010.2078518).
        . IEEE Trans. Power Electron. , 12 , 2919 - 2929
    5. 5)
      • J. Kim .
        5. Kim, J., et al: ‘Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 30373048 (doi: 10.1109/TPEL.2010.2073488).
        . IEEE Trans. Power Electron. , 12 , 3037 - 3048
    6. 6)
      • M. Ross , R. Hidalgo , C. Abbey , G. Joos .
        6. Ross, M., Hidalgo, R., Abbey, C., Joos, G.: ‘Energy storage system scheduling for an isolated microgrid’, IET Renew. Power Gener., 2011, 5, (2), pp. 117123 (doi: 10.1049/iet-rpg.2009.0204).
        . IET Renew. Power Gener. , 2 , 117 - 123
    7. 7)
      • H. Shayeghi , H.A. Shayanfar , A. Jalili .
        7. Shayeghi, H., Shayanfar, H.A., Jalili, A.: ‘Load frequency control strategies: a state-of-the-art survey for the researcher’, Energy Convers. Manage., 2009, 50, (2), pp. 344353 (doi: 10.1016/j.enconman.2008.09.014).
        . Energy Convers. Manage. , 2 , 344 - 353
    8. 8)
      • I. Serban , C. Marinescu .
        8. Serban, I., Marinescu, C.: ‘Aggregate load-frequency control of a wind-hydro autonomous microgrid’, Renew. Energy, 2011, 36, (12), pp. 33453354 (doi: 10.1016/j.renene.2011.05.012).
        . Renew. Energy , 12 , 3345 - 3354
    9. 9)
      • T. Senjyu , T. Nakaji , K. Uezato , T. Funabashi .
        9. Senjyu, T., Nakaji, T., Uezato, K., Funabashi, T.: ‘A hybrid power system using alternative energy facilities in isolated Island’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 406414 (doi: 10.1109/TEC.2004.837275).
        . IEEE Trans. Energy Convers. , 2 , 406 - 414
    10. 10)
      • K.C. Divya , J. Østergaard .
        10. Divya, K.C., Østergaard, J.: ‘Battery energy storage technology for power systems – an overview’, Electr. Power Syst. Res., 2009, 79, (4), pp. 511520 (doi: 10.1016/j.epsr.2008.09.017).
        . Electr. Power Syst. Res. , 4 , 511 - 520
    11. 11)
      • J.A.P. Lopes , F.J. Soares , P.M.R. Almeida .
        11. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, (1), pp. 168183 (doi: 10.1109/JPROC.2010.2066250).
        . Proc. IEEE , 1 , 168 - 183
    12. 12)
      • S. Vazquez , S.M. Lukic , E. Galvan , L.G. Franquelo , J.M. Carrasco .
        12. Vazquez, S., Lukic, S.M., Galvan, E., Franquelo, L.G., Carrasco, J.M.: ‘Energy storage systems for transport and grid applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 38813895 (doi: 10.1109/TIE.2010.2076414).
        . IEEE Trans. Ind. Electron. , 12 , 3881 - 3895
    13. 13)
      • (2008)
        13. UCTE: ‘Technical paper – definition of a set of requirements to generating units’ (Union for the Coordination of the Transmission of Electricity (UCTE), 2008), Online: http://www.ucte.org.
        .
    14. 14)
      • J.M. Guerrero , J.C. Vasquez , J. Matas , L.G. de Vicuna , M. Castilla .
        14. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach towards standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172 (doi: 10.1109/TIE.2010.2066534).
        . IEEE Trans. Ind. Electron. , 1 , 158 - 172
    15. 15)
      • (2000)
        15. EN 50160: ‘Voltage characteristics of electricity supplied by public distribution systems’ (European Committee for Electrotechnical Standardization, 2000).
        .
    16. 16)
      • E.I. Vrettos , S.A. Papathanassiou .
        16. Vrettos, E.I., Papathanassiou, S.A.: ‘Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 744756 (doi: 10.1109/TEC.2011.2129571).
        . IEEE Trans. Energy Convers. , 3 , 744 - 756
    17. 17)
      • C. Chen , S. Duan , T. Cai , B. Liu , G. Hu .
        17. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2010, 5, (3), pp. 258267 (doi: 10.1049/iet-rpg.2010.0052).
        . IET Renew. Power Gener. , 3 , 258 - 267
    18. 18)
      • P. Mercier , R. Cherkaoui , A. Oudalov .
        18. Mercier, P., Cherkaoui, R., Oudalov, A.: ‘Optimizing a battery energy storage system for frequency control application in an isolated power system’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14691477 (doi: 10.1109/TPWRS.2009.2022997).
        . IEEE Trans. Power Syst. , 3 , 1469 - 1477
    19. 19)
      • D. Jones .
        19. Jones, D.: ‘Estimation of power system parameters’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19801989 (doi: 10.1109/TPWRS.2004.835671).
        . IEEE Trans. Power Syst. , 4 , 1980 - 1989
    20. 20)
      • D.D. Rasolomampionona .
        20. Rasolomampionona, D.D.: ‘A modified power system model for AGC analysis’. Proc. Int. Conf. IEEE PowerTech, Bucharest, Romania, June–July 2009, pp. 16.
        . Proc. Int. Conf. IEEE PowerTech , 1 - 6
    21. 21)
      • P. Kundur . (1994)
        21. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Professional, 1994), pp. 581626.
        .
    22. 22)
      • Q.C. Zhong , G. Weiss .
        22. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267 (doi: 10.1109/TIE.2010.2048839).
        . IEEE Trans. Ind. Electron. , 4 , 1259 - 1267
    23. 23)
      • M.P.N. van Wesenbeeck , S.W.H. de Haan , P. Varela , K. Visscher .
        23. van Wesenbeeck, M.P.N., de Haan, S.W.H., Varela, P., Visscher, K.: ‘Grid tied converter with virtual kinetic storage’. Proc. Int. Conf. IEEE PowerTech, Bucharest, Romania, June–July 2009, pp. 17.
        . Proc. Int. Conf. IEEE PowerTech , 1 - 7
    24. 24)
      • F. Blaabjerg , R. Teodorescu , M. Liserre , A.V. Timbus .
        24. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409 (doi: 10.1109/TIE.2006.881997).
        . IEEE Trans. Ind. Electron. , 5 , 1398 - 1409
    25. 25)
      • F. Katiraei , M.R. Iravani , P.W. Lehn .
        25. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 369378 (doi: 10.1049/iet-gtd:20045207).
        . IET Gener. Transm. Distrib. , 3 , 369 - 378
    26. 26)
      • S.-K. Chung .
        26. Chung, S.-K.: ‘A phase tracking system for three phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438 (doi: 10.1109/63.844502).
        . IEEE Trans. Power Electron. , 3 , 431 - 438
    27. 27)
      • I. Serban , C. Marinescu .
        27. Serban, I., Marinescu, C.: ‘Frequency control issues in microgrids with renewable energy sources’. Proc. Int. Symp. Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, May 2011, pp. 16.
        . Proc. Int. Symp. Advanced Topics in Electrical Engineering (ATEE) , 1 - 6
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2011.0283
Loading

Related content

content/journals/10.1049/iet-rpg.2011.0283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address