http://iet.metastore.ingenta.com
1887

Bidirectional soft-switching dc–dc converter for battery energy storage systems

Bidirectional soft-switching dc–dc converter for battery energy storage systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study introduces a bidirectional dc–dc converter with current- and voltage-fed (VF) ports that features soft switching in both buck and boost operating modes. The converter can be used for integration of low-voltage DC sources, such as batteries into a dc bus of considerably higher voltage or a dc link of a grid side inverter. Zero current switching, assisted with the leakage inductance of the isolation transformer, can be achieved at the current-fed side along with zero voltage switching of the VF side, assisted by snubber or intrinsic capacitances of the transistors. Soft switching can be maintained over a wide range of voltage and power levels, regardless of the energy transfer direction. Converter operation is described and theoretical findings were verified with experimental results obtained by means of a 300 W prototype operating at a switching frequency of 100 kHz and designed for integration of a 24 V battery into 400 V dc bus. The converter proposed is compared in terms of efficiency to other competing soft-switching full-bridge topologies implemented with the same components.

References

    1. 1)
      • 1. Wichert, B.: ‘PV-diesel hybrid energy systems for remote area power generation – a review of current practice and future developments’, Renew. Sust. Energy Rev., 1997, 1, (3), pp. 209228.
    2. 2)
      • 2. Shaahid, S. M., Elhadidy, M. A.: ‘Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions – a step to clean future’, Renew. Sust. Energy Rev., 2008, 12, (2), pp. 488503.
    3. 3)
      • 3. Leadbetter, J., Swan, L.: ‘Battery storage system for residential electricity peak demand shaving’, Energy Build., 2012, 55, pp. 685692.
    4. 4)
      • 4. Restrepo, C., Salazar, A., Schweizer, H., et al: ‘Residential battery storage: is the timing right?’, IEEE Electrification Mag., 2015, 3, (3), pp. 1421.
    5. 5)
      • 5. Williamson, S. S., Rathore, A. K., Musavi, F.: ‘Industrial electronics for electric transportation: current state-of-the-art and future challenges’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 30213032.
    6. 6)
      • 6. Lai, J. S., Nelson, D. J.: ‘Energy management power converters in hybrid electric and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 766777.
    7. 7)
      • 7. Meghdad, T., Jafar, M., Bijan, A.: ‘High step-up current-fed ZVS dual half-bridge DC–DC converter for high-voltage applications’, IET Power Electron., 2015, 8, (2), pp. 309318.
    8. 8)
      • 8. Peng, F. Z., Li, H., Su, G.-J., et al: ‘A new ZVS bidirectional DC–DC converter for fuel cell and battery application’, IEEE Trans. Power Electron., 2004, 19, (1), pp. 5465.
    9. 9)
      • 9. Mazumder, S. K., Burra, R. K., Acharya, K.: ‘A ripple-mitigating and energy-efficient fuel cell power-conditioning system’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 14371452.
    10. 10)
      • 10. Sullivan, C. R., Awerbuch, J. J., Latham, A. M.: ‘Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 740747.
    11. 11)
      • 11. Abeywardana, D. B. W., Hredzak, B., Agelidis, V. G.: ‘Single-phase grid-connected LiFePO4 battery–supercapacitor hybrid energy storage system with interleaved boost inverter’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 55915604.
    12. 12)
      • 12. Song, W., Lehman, B.: ‘Current-fed dual-bridge DC–DC converter’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 461469.
    13. 13)
      • 13. Sun, X., Wu, X., Shen, Y., et al: ‘A current-fed isolated bidirectional DC–DC converter’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 68826895.
    14. 14)
      • 14. Wang, Z., Li, H.: ‘A soft switching three-phase current-fed bidirectional DC–DC converter with high efficiency over a wide input voltage range’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 669684.
    15. 15)
      • 15. Sha, D., You, F., Wang, X.: ‘A high-efficiency current-fed semi-dual-active bridge DC–DC converter for low input voltage applications’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 21552164.
    16. 16)
      • 16. Xuewei, P., Rathore, A. K.: ‘Comparison of bi-directional voltage-fed and current-fed dual active bridge isolated dc/dc converters low voltage high current applications’, Proc. ISIE'2014, Istanbul, 2014, pp. 25662571.
    17. 17)
      • 17. Chakraborty, S., Chattopadhyay, S.: ‘Analysis and comparison of voltage-source and current-source asymmetric dual-active half-bridge converters’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 20722079.
    18. 18)
      • 18. Yu, S., Nguyen, M. Q., Choi, W.: ‘A novel soft-switching battery charge/discharge converter with the zero voltage discharge function’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 50675078.
    19. 19)
      • 19. Sree, K. R., Rathore, A. K.: ‘Analysis and design of impulse-commutated zero-current-switching single-inductor current-Fed three-phase push–pull converter’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 15171526.
    20. 20)
      • 20. Modepalli, K., Mohammadpour, A., Li, T., et al: ‘Three-phase current-fed isolated DC–DC converter with zero-current switching’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 242250.
    21. 21)
      • 21. Watson, R., Lee, F. C.: ‘A soft-switched, full-bridge boost converter employing an active-clamp circuit’. PESC Record. 27th Annual IEEE Power Electronics Specialists Conf., Baveno, 1996, vol. 2, pp. 19481954.
    22. 22)
      • 22. Yakushev, V., Meleshin, V., Fraidlin, S.: ‘Full-bridge isolated current fed converter with active clamp’. Fourteenth Annual Applied Power Electronics Conf. Exposition, APEC ‘99, Dallas, TX, 1999, vol. 1, pp. 560566.
    23. 23)
      • 23. Ahmed, O. A., Bleijs, J. A. M.: ‘High-efficiency DC–DC converter for fuel cell applications: performance and dynamic modeling’. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 6774.
    24. 24)
      • 24. Wang, K., Lin, C. Y., Zhu, L., et al: ‘Bi-directional DC to DC converters for fuel cell systems’. Power Electronics in Transportation (Cat. No.98TH8349), Dearborn, MI, 1998, pp. 4751.
    25. 25)
      • 25. Jang, S.-J., Lee, T.-W., Lee, W.-C., et al: ‘Bi-directional dc–dc converter for fuel cell generation system’. 2004 IEEE 35th Annual Power Electronics Specialists Conf. (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, vol. 6, pp. 47224728.
    26. 26)
      • 26. Mao, H., Abu-Qahouq, J., Luo, S., et al: ‘Zero-voltage-switching half-bridge DC–DC converter with modified PWM control method’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 947958.
    27. 27)
      • 27. Ahmed, O. A., Bleijs, J.: ‘Optimized active-clamp circuit design for an isolated full-bridge current-fed DC–DC converter’. 2011 4th Int. Conf. on Power Electronics Systems and Applications, Hong Kong, 2011, pp. 17.
    28. 28)
      • 28. Wu, T. F., Chen, Y. C., Yang, J. G., et al: ‘Isolated bidirectional full-bridge DC–DC converter with a flyback snubber’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 19151922.
    29. 29)
      • 29. Zakis, J., Vinnikov, D., Kolosov, V., et al: ‘New active clamp circuit for current-fed galvanically isolated DC/DC converters’. 2013 Int. Conf.-Workshop Compatibility and Power Electronics, Ljubljana, 2013, pp. 353358.
    30. 30)
      • 30. Rathore, K., Mazumder, S. K.: ‘Novel zero-current switching current-fed half-bridge isolated Dc/Dc converter for fuel cell based applications’. 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010, pp. 35233529.
    31. 31)
      • 31. Rathore, K., Prasanna, P. U.: ‘Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 44824491.
    32. 32)
      • 32. Xuewei, P., Rathore, A. K.: ‘Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 23072315.
    33. 33)
      • 33. Xuewei, P., Rathore, A. K.: ‘Naturally clamped soft-switching current-fed three-phase bidirectional DC/DC converter’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 33163324.
    34. 34)
      • 34. Xuewei, P., Rathore, A. K.: ‘Novel bidirectional snubberless naturally clamped ZCS current-fed full-bridge voltage doubler: analysis, design, and experimental results’. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 55185525.
    35. 35)
      • 35. Chakraborty, D., Rathore, A. K., Breaz, E., et al: ‘Parasitics assisted soft-switching and naturally commutated current-fed bidirectional push-pull voltage doubler’. 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, 2015, pp. 18.
    36. 36)
      • 36. Bal, S., Rathore, A. K., Srinivasan, D.: ‘Naturally commutated current-fed three-phase bidirectional soft-switching DC–DC converter with 120° modulation technique’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 43544364.
    37. 37)
      • 37. Chakraborty, D., Breaz, E., Rathore, A. K., et al: ‘Parasitics-assisted soft-switching and secondary modulated snubberless clamping current-Fed bidirectional voltage doubler for fuel cell vehicles’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 10531062.
    38. 38)
      • 38. Al-Naseem, O., Erickson, R. W., Carlin, P.: ‘Prediction of switching loss variations by averaged switch modeling’. APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conf. Exposition (Cat. No.00CH37058), New Orleans, LA, 2000, vol. 2000, pp. 242248.
    39. 39)
      • 39. Schonbergerschonberger, J., Duke, R., Round, S. D.: ‘DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 14531460.
    40. 40)
      • 40. Chen, D., Xu, L., Yao, L.: ‘DC voltage variation based autonomous control of DC microgrids’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 637648.
    41. 41)
      • 41. Nymand, M., Andersen, M. A. E.: ‘High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 505514.
    42. 42)
      • 42. Ouyang, Z., Sen, G., Thomsen, O. C., et al: ‘Analysis and design of fully integrated planar magnetics for primary–parallel isolated boost converter’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 494508.
    43. 43)
      • 43. Zhu, L., Wang, K., Lee, F. C., et al: ‘New start-up schemes for isolated full-bridge boost converters’, IEEE Trans. Power Electron., 2003, 18, (4), pp. 946951.
    44. 44)
      • 44. Lindberg-Poulsen, K., Ouyang, Z., Sen, G., et al: ‘A new method for start-up of isolated boost converters using magnetic- and winding-integration’. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conf. Exposition (APEC), Orlando, FL, 2012, pp. 340345.
    45. 45)
      • 45. Choi, W., Young, S., Son, D., et al: ‘Consideration to minimize power losses in synchronous rectification’. 8th Int. Conf. on Power Electronics – ECCE Asia, Jeju, 2011, pp. 28992905.
    46. 46)
      • 46. Nayanasiri, D. R., Foo, G. H. B., Vilathgamuwa, D. M., et al: ‘A switching control strategy for single- and dual-inductor current-fed push–pull converters’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 37613771.
    47. 47)
      • 47. Xuewei, P., Rathore, A. K., Prasanna, U. R.: ‘Novel soft-switching snubberless naturally clamped current-fed full-bridge front-end-converter-based bidirectional inverter for renewables, microgrid, and UPS applications’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 41324141.
    48. 48)
      • 48. Oyarbide, E., Bernal, C., Molina-Gaudó, P.: ‘New current measurement procedure using a conventional Rogowski transducer for the analysis of switching transients in transistors’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 24902492.
    49. 49)
      • 49. Zhang, Z., Guo, B., Wang, F. F., et al: ‘Methodology for wide band-gap device dynamic characterization’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 93079318.
    50. 50)
      • 50. Prasana, U. R., Rathore, A. K.: ‘Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: analysis, design, and experimental results’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26612672.
    51. 51)
      • 51. Xuewei, P., Rathore, A. K.: ‘Current-fed soft-switching push–pull front-end converter-based bidirectional inverter for residential photovoltaic power system’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 60416051.
    52. 52)
      • 52. Xuewei, P., Rathore, A. K.: ‘Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel-cell vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 55355546.
    53. 53)
      • 53. Wen, H., Xiao, W.: ‘Bidirectional dual-active-bridge DC–DC converter with triple-phase-shift control’. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conf. Exposition (APEC), Long Beach, CA, USA, 2013, pp. 19721978.
    54. 54)
      • 54. Darcovich, K., Henquin, E.R., Kenney, B., et al: ‘Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration’, Appl. Energy, 2013, 111, pp. 853861.
    55. 55)
      • 55. Uddin, K., Gough, R., Radcliffe, J., et al: ‘Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom’, Appl. Energy, 2017, 206, pp. 1221.
    56. 56)
      • 56. Graovac, D., Purschel, M., Kiep, A.: ‘MOSFET power losses calculation using the data-sheet parameters’, Appl. Note, 2006, 1, pp. 123.
    57. 57)
      • 57. Boos, P., Mels, A., Sque, S.: ‘A 30 V bidirectional power switch in a CMOS technology using standard gate oxide’. 2016 28th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Prague, 2016, pp. 247250.
    58. 58)
      • 58. Zhou, K., Luo, X., Huang, L., et al: ‘An ultralow loss superjunction reverse blocking insulated-gate bipolar transistor with shorted-collector trench’, IEEE Electron Device Lett., 2016, 37, (11), pp. 14621465.
    59. 59)
      • 59. Mori, S., Aketa, M., Sakaguchi, T., et al: ‘Demonstration of 3 kV 4H-SiC reverse blocking MOSFET’. 2016 28th Int. Symp. on Power Semiconductor Devices and ICs (ISPSD), Prague, 2016, pp. 271274.
    60. 60)
      • 60. Chowdhury, S., Hitchcock, C. W., Stum, Z., et al: ‘Operating principles, design considerations, and experimental characteristics of high-voltage 4H-SiC bidirectional IGBTs’, IEEE Trans. Electron. Dev., 2017, 64, (3), pp. 888896.
    61. 61)
      • 61. Ide, T., Shimizu, M., Shen, X. Q., et al: ‘Equivalent circuit model for a GaN gate injection transistor bidirectional switch’, IEEE Trans. Electron. Dev., 2012, 59, (10), pp. 26432649.
    62. 62)
      • 62. Morita, T., Yanagihara, M., Ishida, H., et al: ‘650 V 3.1 mΩcm2 GaN-based monolithic bidirectional switch using normally-off gate injection transistor’. 2007 IEEE Int. Electron Devices Meeting, Washington, DC, 2007, pp. 865868.
    63. 63)
      • 63. Zhao, B., Song, Q., Liu, W., et al: ‘Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 40914106.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2018.5054
Loading

Related content

content/journals/10.1049/iet-pel.2018.5054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address