Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Induction motor drive for PV water pumping with reduced sensors

This study presents the reduced sensors based standalone solar photovoltaic (PV) energised water pumping. The system is configured to reduce both cost and complexity with simultaneous assurance of optimum power utilisation of PV array. The proposed system consists of an induction motor-operated water pump, controlled by modified direct torque control. The PV array is connected to the DC link through a DC–DC boost converter to provide maximum power point tracking (MPPT) control and DC-link voltage is maintained by a three-phase voltage-source inverter. The estimation of motor speed eliminates the use of tacho generator/encoder and makes the system cheaper and robust. Moreover, an attempt is made to reduce the number of current sensors and voltage sensors in the system. The proposed system constitutes only one current sensor and only one voltage sensor used for MPPT as well as for the phase voltage estimation and for the phase currents’ reconstruction. Parameters adaptation makes the system stable and insensitive toward parameters variation. Both simulation and experimental results on the developed prototype in the laboratory validate the suitability of proposed system.

References

    1. 1)
      • 4. Shafiullah, G.M., Amanullah, M.T., Shawkat Ali, A.B.M., et al: ‘Smart grids: opportunities, developments and trends’ (Springer, London, UK, 2013).
    2. 2)
      • 3. Parvathy, S., Vivek, A.: ‘A photovoltaic water pumping system with high efficiency and high lifetime’. Int. Conf. Advancements in Power and Energy (TAP Energy), Kollam, India, 24–26 June 2015, pp. 489493.
    3. 3)
      • 20. Saritha, B., Janakiraman, P.A.: ‘Sinusoidal three-phase current reconstruction and control using a DC-link current sensor and a curve-fitting observer’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 26572664.
    4. 4)
      • 16. Chen, J., Huang, J.: ‘Online decoupled stator and rotor resistances adaptation for speed sensorless induction motor drives by a time-division approach’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 45874599.
    5. 5)
      • 21. Shukla, S., Singh, B.: ‘Solar PV array fed speed sensorless vector control of induction motor drive for water pumping’. Proc. Seventh India Int. Conf. Power Electronics (IICPE), Patiala, India, 2016, pp. 16.
    6. 6)
      • 14. Casadei, D., Profumo, F., Serra, G., et al: ‘FOC and DTC: two viable schemes for induction motors torque control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 779787.
    7. 7)
      • 17. Brando, G., Dannier, A., Del Pizzo, A., et al: ‘Torque derivative control in induction motor drives supplied by multilevel inverters’, IET Power Electron., 2016, 9, (11), pp. 22492261.
    8. 8)
      • 1. Masters, G.M.: ‘Renewable and efficient electric power systems’ (IEEE Press, Wiley and Sons, Inc., Hoboken, New Jersey, 2013), pp. 445452.
    9. 9)
      • 12. Narayana, V., Mishra, A.K., Singh, B.: ‘Development of low-cost PV array-fed SRM drive-based water pumping system utilizing CSC converter’, IET Power Electron., 2017, 10, (2), pp. 156168.
    10. 10)
      • 7. Chowdhury, S., Taylor, G.A., Chowdhury, S.P., et al: ‘Modelling, simulation and performance analysis of a PV array in an embedded environment’. Proc. 42nd Int. Universities Power Engineering Conf. (UPEC), Brighton,UK, 2007, pp. 781785.
    11. 11)
      • 6. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    12. 12)
      • 13. Marcetic, D.P., Adzic, E.M.: ‘Improved three-phase current reconstruction for induction motor drives with DC-link shunt’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 24542462.
    13. 13)
      • 9. Singh, B., Kumar, R.: ‘Simple brushless DC motor drive for solar photovoltaic array fed water pumping system’, IET Power Electron., 2016, 9, (7), pp. 14871495.
    14. 14)
      • 8. Antonello, R., Carraro, M., Costabeber, A., et al: ‘Energy-efficient autonomous solar water-pumping system for permanent-magnet synchronous motors’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 4351.
    15. 15)
      • 15. Nemade, R.V., Pandit, J.K., Aware, M.V.: ‘Reconfiguration of T-type inverter for direct torque controlled induction motor drives under open-switch faults’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 29362947.
    16. 16)
      • 2. Foster, R., Ghassemi, M., Cota, M.: ‘Solar energy: renewable energy and the environment’ (CRC Press, Taylor and Francis Group, Inc., Boca Raton, Florida, 2010).
    17. 17)
      • 19. Li, X., Dusmez, S., Akin, B., et al: ‘A new SVPWM for the phase current reconstruction of three-phase three-level T-type converters’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 26272637.
    18. 18)
      • 5. Sontake, V.C., Kalamkar, V.R.: ‘Solar photovoltaic water pumping system – a comprehensive review’, Renew. Sustain. Energy Rev., 2016, 59, pp. 10381067.
    19. 19)
      • 10. Jain, S., Karampuri, R., Somasekhar, V.T.: ‘An integrated control algorithm for a single-stage PV pumping system using an open-end winding induction motor’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 956965.
    20. 20)
      • 18. Naganathan, P., Srinivas, S., Ittamveettil, H.: ‘Five-level torque controller-based DTC method for a cascaded three-level inverter fed induction motor drive’, IET Power Electron., 2017, 10, (10), pp. 12231230.
    21. 21)
      • 11. Kumar, R., Singh, B.: ‘Single stage solar PV fed brushless DC motor driven water pump’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 13771385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0856
Loading

Related content

content/journals/10.1049/iet-pel.2017.0856
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address