access icon free Model predictive control methods of leakage current elimination for a three-level T-type transformerless PV inverter

This study presents finite control set model predictive control (FCS-MPC) methods to eliminate leakage current for a three-level T-type transformerless photovoltaic (PV) inverter without any modification on topology or any hardware changes. The proposed FCS-MPC methods are capable of eliminating the leakage current in the transformerless PV system by applying the defined candidate voltage vector (VV) combinations with only six medium and one zero VVs (6MV1Z) or three large and three small VVs, which generate constant common-mode voltage to perform the optimisation in every control period. With fewer VVs used for the optimisation, the computational burden can be significantly reduced. Furthermore, comparative analysis is performed to show that among these proposed methods, the 6MV1Z method can achieve satisfactory performances in both grid current tracking and neutral point potentials balance control even with less number of candidate VVs, which exhibits the FCS-MPC as an alternative control strategy to be used in the grid-connected transformerless PV system. Finally, experiments are performed to validate the analysis and the effectiveness of the proposed methods.

Inspec keywords: power convertors; leakage currents; invertors; predictive control; photovoltaic power systems; power grids; voltage control

Other keywords: 6MV1Z method; transformerless PV system; alternative control strategy; control period; finite control; constant common-mode voltage; hardware changes; transformerless photovoltaic inverter; three-level T-type; grid current tracking; defined candidate voltage vector combinations; transformerless PV inverter; leakage current elimination; model predictive control; fewer VVs; optimisation; zero VVs; FCS-MPC methods; candidate VVs; neutral point potentials balance control

Subjects: Optimal control; Power convertors and power supplies to apparatus; Control of electric power systems; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 16. Acuña, P., Morán, L., Rivera, M., et al: ‘A single-objective predictive control method for a multivariable single phase three-level NPC converter-based active power filter’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45984607.
    2. 2)
      • 1. Fujii, K., Kikuchi, T., Koubayashi, H., et al: ‘1-MW advanced T-type NPC converters for solar power generation system’. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, 2013, pp. 110.
    3. 3)
      • 26. Rodriguez, P., Pou, J., Bergas, J., et al: ‘Correction to ‘decoupled double synchronous reference frame PLL for power converters control’ [Mar 07 584-592]’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10781078.
    4. 4)
      • 7. Xiao, H., Xie, S.: ‘Transformerless split-inductor neutral point clamped three-level PV grid-connected inverter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17991808.
    5. 5)
      • 17. Vazquez, S., Marquez, A., Aguilera, R., et al: ‘Predictive optimal switching sequence direct power control for grid-connected power converters’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 20102020.
    6. 6)
      • 10. Cavalcanti, M.C., de Oliveira, K.C., de Farias, A.M., et al: ‘Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 13601368.
    7. 7)
      • 24. Cortes, P., Rodriguez, J., Silva, C., et al: ‘Delay compensation in model predictive current control of a three-phase inverter’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 13231325.
    8. 8)
      • 23. Kimball, J.W., Zawodniok, M.: ‘Reducing common-mode voltage in three-phase sine-triangle PWM with interleaved carriers’, IEEE Trans. Power Electron., 2011, 26, (8), pp. 22292236.
    9. 9)
      • 22. Hoseini, S.K., Adabi, J., Sheikholeslami, A.: ‘Predictive modulation schemes to reduce common-mode voltage in three-phase inverters-fed AC drive systems’, IET Power Electron., 2014, 7, (4), pp. 840849.
    10. 10)
      • 4. Teichmann, R., Bernet, S.: ‘A comparison of three-level converters versus two-level converters for low-voltage drives traction and utility applications’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 855865.
    11. 11)
      • 6. Koutroulis, E., Blaabjerg, F.: ‘Design optimization of transformerless grid-connected PV inverters including reliability’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 325335.
    12. 12)
      • 9. Kerekes, T., Teodorescu, R., Liserre, M.: ‘Common mode voltage in case of transformerless PV inverters connected to the grid’. IEEE International Symposium on Industrial Electronics, Cambridge, 2008, pp. 23902395.
    13. 13)
      • 13. Lee, J.-S., Lee, K.-B.: ‘New modulation techniques for a leakage current reduction and a neutral-point voltage balance in transformerless photovoltaic systems using a three-level inverter’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17201732.
    14. 14)
      • 28. Rojas, C.A., Aguirre, M., Kouro, S., et al: ‘Leakage current mitigation in photovoltaic string inverter using predictive control with fixed average switching frequency’, IEEE Trans. Ind. Electron., 2017, PP, (99), pp. 11.
    15. 15)
      • 20. Kwak, S., Park, J.: ‘Model predictive direct power control with vector preselection technique for highly efficient active rectifiers’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 4452.
    16. 16)
      • 12. Nguyen, T.D., Phan, D.Q., Dao, D.N., et al: ‘Carrier phase-shift PWM to reduce common-mode voltage for three-level T-type NPC inverters’, J. Power Electron., 2014, 14, (6), pp. 11971207.
    17. 17)
      • 11. Dong, D., Luo, F., Boroyevich, D., et al: ‘Leakage current reduction in a single-phase bidirectional ac–dc full-bridge inverter’, IEEE Trans. Power Electron., 2012, 27, (10), pp. 42814291.
    18. 18)
      • 18. Rodríguez, J., Pontt, J., Silva, C.A., et al: ‘Switching strategy based on model predictive control of VSI to obtain high efficiency and balanced loss distribution’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 45514567.
    19. 19)
      • 2. ‘PV Grid-Connected inverters 2015–2016’, Sungrow Corp., Product Report, March 2015. Available at http://www.sungrowpower.com.
    20. 20)
      • 19. Kwak, S., Mun, S.: ‘Model predictive control methods to reduce common-mode voltage for three-phase voltage source inverters’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 50195035.
    21. 21)
      • 14. Cavalcanti, M.C., Farias, A.M., de Oliveira, K.C., et al: ‘Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 435443.
    22. 22)
      • 21. Guo, L., Zhang, X., Yang, S., et al: ‘A model predictive control-based common-mode voltage suppression strategy for voltage-source inverter’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 61156125.
    23. 23)
      • 8. Zhou, Y., Li, H.: ‘Analysis and suppression of leakage current in cascaded-multilevel-inverter-based PV systems’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 52655277.
    24. 24)
      • 29. ‘Capacitive Leakage Currents’, SMA technical information, Ableitstrom-TI-en-25, version 2.5.
    25. 25)
      • 3. Schweizer, M., Kolar, J.W.: ‘Design and implementation of a highly efficient three-level T-type converter for low-voltage applications’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 899907.
    26. 26)
      • 25. Dell'Aquila, A., Liserre, M., Monopoli, V.G., et al: ‘Overview of PI-based solutions for the control of DC buses of a single-phase H-bridge multilevel active rectifier’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 857866.
    27. 27)
      • 15. Guo, X., Cavalcanti, M.C., Farias, A.M., et al: ‘Single carrier modulation for neutral point clamped inverters in three-phase transformerless photovoltaic systems’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26352637.
    28. 28)
      • 5. Park, Y., Sul, S.K., Lim, C.H., et al: ‘Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy’, Trans. Power Electron., 2015, 30, (5), pp. 26602673.
    29. 29)
      • 27. Kumar, E.A., Sekhar, K.C., Rao, R.S.: ‘Model predictive current control of a three-phase T-type NPC inverter to reduce common mode voltage’, J. Circuit Syst. Comput., 2018, 27, p. 1850028.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0762
Loading

Related content

content/journals/10.1049/iet-pel.2017.0762
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading