access icon free Development of fault-tolerant MLI topology

Multilevel inverters (MLIs) have developed deep roots in various industrial sectors owing to their advantages over conventional two-level inverters. However, the reliability of the semiconductor devices has been one of the major concerns for the proper functioning of MLI. Therefore, a novel fault-tolerant topology is proposed in this study. The proposed topology is capable to tolerate single- and multi-switch faults. It has lesser device count compared with the most recent work in the field. Moreover, it achieves inherent voltage balancing across capacitors. The proposed fault-tolerant topology is simulated in MATLAB/Simulink and validated experimentally.

Inspec keywords: invertors; capacitors; fault tolerance

Other keywords: deep roots; MLIs; novel fault-tolerant topology; industrial sectors; semiconductor devices; lesser device count; two-level inverters; fault-tolerant MLI topology; multilevel inverters; multiswitch faults

Subjects: Reliability; Power convertors and power supplies to apparatus; Control of electric power systems; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 2. Baker, R.H., Bannister, L.H.: ‘Electric power converter’. US Patent 3 867 643, February 1975.
    2. 2)
      • 6. Ristow, A., Begovic, M., Pregelj, A., et al: ‘Development of a methodology for improving photovoltaic inverter reliability’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 25812592.
    3. 3)
      • 20. Ceballos, S., Pou, J., Zaragoza, J., et al: ‘Fault-tolerant neutral-point-clamped converter solutions based on including a fourth resonant leg’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 22932303.
    4. 4)
      • 5. Li, J., Huang, A.Q., Liang, Z., et al: ‘Analysis and design of active NPC (ANPC) inverters for the fault-tolerant operation of high-power electrical drives’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 519533.
    5. 5)
      • 18. Ceballos, S., Pou, J., Robles, E., et al: ‘Three-level converter topologies with switch breakdown fault-tolerance capability’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 982995.
    6. 6)
      • 10. Flores, P., Dixon, J., Ortuzar, M., et al: ‘Static Var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 130138.
    7. 7)
      • 9. Alepuz, S., Busquets-Monge, S., Bordonau, J., et al: ‘Interfacing renewable energy sources to the utility grid using a three-level inverter’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15041511.
    8. 8)
      • 22. Apruzzese, J.N., Monge, S.B., Bordonau, J., et al: ‘Analysis of the fault-tolerance capacity of the multilevel active-clamped converter’, IEEE Trans. Power Electron., 2013, 60, (11), pp. 47734783.
    9. 9)
      • 24. Ambusaidi, K.A., Pickert, V., Zahawi, B.: ‘Computer aided analysis of fault-tolerant multilevel DC/DC converters’. Int. Conf. Power Electronic, Drives and Energy Systems, New Delhi, India, 2006, pp. 16.
    10. 10)
      • 3. Gautam, S.P., Kumar, L., Gupta, S.: ‘Hybrid topology of symmetrical multilevel inverter using less number of devices’, IET Power Electron., 2015, 8, (11), pp. 21252135.
    11. 11)
      • 8. Barrena, J.A., Marroyo, L., Vidal, M.A.R., et al: ‘Individual voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 2129.
    12. 12)
      • 4. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14411451.
    13. 13)
      • 11. Liu, C.-H., Hsu, Y.-Y.: ‘Design of a self-tuning PI controller for a STATCOM using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 702715.
    14. 14)
      • 16. Song, W., Huang, A.Q.: ‘Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 27002708.
    15. 15)
      • 1. Gautam, S.P., Gupta, S., Kumar, L.: ‘Reliability improvement of transistor clamped H-bridge cascaded multilevel inverter’, IET Power Electron., 2017, 10, (7), pp. 770781.
    16. 16)
      • 19. Ceballos, S., Pou, J., Robles, E., et al: ‘Performance evaluation of fault tolerant neutral-point-clamped converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 27092718.
    17. 17)
      • 13. Madhukar Rao, A., Sivakumar, K.: ‘A fault-tolerant single-phase five-level inverter for grid-independent PV systems’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75697577.
    18. 18)
      • 14. Chen, A., Hu, L., Chen, L., et al: ‘A multilevel converter topology with the fault-tolerant ability’, IEEE Trans. Power Electron., 2015, 20, (2), pp. 405415.
    19. 19)
      • 15. Lezana, P., Aguilera, R., Rodriguez, J.: ‘Fault detection on multicell converter based on output voltage frequency analysis’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 22752283.
    20. 20)
      • 17. Yazdani, A., Sepahvand, H., Crow, M.L., et al: ‘Fault detection and mitigation in multilevel converter STATCOMs’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 13071315.
    21. 21)
      • 12. Gautam, S.P., Kumar, L., Gupta, S., et al: ‘A single-phase five-level inverter topology with switch fault-tolerance capabilities’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 20042012.
    22. 22)
      • 7. Cheng, Y., Qian, C., Crow, M.L., et al: ‘A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15121521.
    23. 23)
      • 21. Gautam, S.P., Kumar, L., Gupta, S.: ‘Reduction in a number of devices for symmetrical and asymmetrical multilevel inverters’, IET Power Electron., 2016, 9, (4), pp. 698709.
    24. 24)
      • 23. Ambusaidi, K., Pickert, V., Zahawi, B.: ‘New circuit topology for fault-tolerant H-bridge DC–DC converter’, IEEE Trans. Power Electron., 2010, 25, pp. 15091516.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0683
Loading

Related content

content/journals/10.1049/iet-pel.2017.0683
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading