Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling, control and performance analysis of a single-stage single-phase inverter with reduced low-frequency input current ripple

A large amount of ripple at twice the output frequency will emerge in the input current due to the pulsating output power in a single-phase inverter. A current-fed-type single-stage single-phase inverter is investigated. Based on the switch multiplexing technique, it can realise not only dc–ac power conversion but also low-frequency input current ripple reduction with a lower number of power switches. A control strategy is proposed, which is capable of controlling both the input and output port performance. The operation performance is analysed, including circuit parameters, efficiency and dynamic behaviour. Besides, the equivalence of control strategy and the similarity of circuit component rating are revealed between this single-stage inverter and a conventional two-stage inverter. The single-stage inverter is preferred in the applications which are sensitive to the power switch number and low-frequency input current ripple. Finally, some experimental results are performed to verify the theoretical analysis.

References

    1. 1)
      • 12. Cai, W., Yi, F.: ‘Topology simplification method based on switch multiplexing technique to deliver DC-DC-AC converters for microgrid applications’. IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 66676674.
    2. 2)
      • 11. Cai, W., ‘Power decoupling methods in building-integrated photovoltaic (BIPV) system’. Master dissertation, Huazhong University of Science and Technology, 2012.
    3. 3)
      • 7. Sun, Y., Liu, Y., Su, M., et al: ‘Review of active power decoupling topologies in single-phase systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 47784794.
    4. 4)
      • 15. Kan, J., Xie, S., Wu, Y., et al: ‘Single-stage and boost-voltage grid-connected inverter for fuel-cell generation system’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54805490.
    5. 5)
      • 17. Zhu, G., Ruan, X., Zhang, L., et al: ‘On the reduction of second harmonic current and improvement of dynamic response for two-stage single-phase inverter’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 10281041.
    6. 6)
      • 1. Fontes, G., Turpin, C., Astier, S., et al: ‘Interactions between fuel cells and power converters: influence of current harmonics on a fuel cell stack’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 670678.
    7. 7)
      • 14. Yi, F., Cai, W.: ‘Modeling, control, and seamless transition of the bidirectional battery-driven switched reluctance motor/generator drive based on integrated multiport power converter for electric vehicle applications’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 70997111.
    8. 8)
      • 21. E.ON Netz: ‘Grid code: high and extra high voltage’, 2003.
    9. 9)
      • 2. Bala, S., Tengnér, T., Rosenfeld, P., et al: ‘The effect of low frequency current ripple on the performance of a lithium iron phosphate (LFP) battery energy storage system’. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 34853492.
    10. 10)
      • 3. Hu, H., Harb, S., Kutkut, N., et al: ‘A review of power decoupling techniques for microinverters eith three different decoupling capacitor locations in PV systems’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 27112726.
    11. 11)
      • 22. National Grid Electricity Transmission Public Limited Company: ‘the grid code’, 2014.
    12. 12)
      • 10. Zhu, G., Wang, H., Liang, B., et al: ‘Enhanced single-phase full-bridge inverter with minimal low-frequency current ripple’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 937943.
    13. 13)
      • 8. Cai, W., Liu, B., Duan, S., et al: ‘An active low-frequency ripple control method based on the virtual capacitor concept for BIPV systems’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17331745.
    14. 14)
      • 6. Fukushima, K., Norigoe, I., Shoyama, M., et al: ‘Input current-ripple consideration for the pulse-link DC-AC converter for fuel cells by small series LC circuit’. IEEE Applied Power Electronics Conf. Exposition (APEC), 2009, pp. 447451.
    15. 15)
      • 4. Vitorino, M.A., Alves, L.F.S., Wang, R., et al: ‘Low-frequency power decoupling in single-phase applications: a comprehensive overview’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 28922912.
    16. 16)
      • 9. Patil, D., Agarwal, V.: ‘Compact onboard single-phase EV battery charger with novel low-frequency ripple compensator and optimum filter design’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 19481956.
    17. 17)
      • 16. Zhang, L., Ruan, X., Ren, X.: ‘A generalized control scheme derivation approach for front-End DC-DC converters in Two-stage inverters’. IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 15631570.
    18. 18)
      • 20. Golestan, S., Ramezani, M., Guerrero, J.M., et al: ‘Moving average filter based phase-locked loops: performance analysis and design guidelines’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 27502763.
    19. 19)
      • 13. Cai, W., Yi, F.: ‘An integrated multiport power converter with small capacitance requirement for switched reluctance motor drive’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 30163026.
    20. 20)
      • 5. Schenck, M.E., Lai, J.S., Stanton, K.: ‘Fuel cell and power conditioning system interactions’. IEEE Applied Power Electronics Conf. Exposition (APEC), 2005, pp. 114120.
    21. 21)
      • 18. Zhang, L., Ruan, X., Ren, X.: ‘Second-harmonic current reduction and dynamic performance improvement in the two-stage inverters: an output impedance perspective’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 394404.
    22. 22)
      • 23. Vorpérian, V.: ‘Simplified analysis of PWM converters using model of PWM switch part I: continuous conduction mode’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (3), pp. 490496.
    23. 23)
      • 19. Wang, J., Ji, B., Lu, X., et al: ‘Steady-state and dynamic input current low-frequency ripple evaluation and reduction in two-stage single-phase inverters with back current gain model’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 42474260.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0646
Loading

Related content

content/journals/10.1049/iet-pel.2017.0646
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address