http://iet.metastore.ingenta.com
1887

Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalised weighted sum model

Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalised weighted sum model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Open end winding induction motor (OEWIM) drives are better alternate for multi-level inverter fed induction motor drives. OEWIM drives can be used in industries and electric vehicles but they entail ripple-free torque. Predictive torque control (PTC) strategy offers high dynamic performance and lesser ripple in torque, flux when compared with direct torque control. Classical PTC involves high switching frequencies and empirical methods to select weighting factors. The selection and tuning of weighting factors are cumbersome. In this article, a new normalised weighted sum model (WSM) based PTC of four-level inverter fed OEWIM is introduced to curtail torque, flux ripples, switching frequency and enhance the selection of weighting factors. The proposed algorithm uses multi-objective cost function and the optimisation of cost function is performed by using normalised WSM. The normalisation of individual cost function simplifies the selection of weighting factors to select optimal voltage vector. As a result, the proposed PTC offers all the features of classical PTC and overcomes the difficulties involved in classical PTC. Simulation and experimental studies are performed on dual inverter fed OEWIM with four-level inversion. The effectiveness of proposed algorithm is verified by comparing proposed PTC algorithm with classical PTC algorithm.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0594
Loading

Related content

content/journals/10.1049/iet-pel.2017.0594
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address