access icon free Current sensorless sliding mode control for direct current–alternating current inverter with load variations via a USDO approach

In this study, a current sensorless sliding mode control (SMC) approach is proposed for a direct current–alternating current inverter system. The SMC scheme shows advantages in dealing with matched disturbances and model uncertainties. However, it fails to remove the effects of mismatched disturbances. In distributed generation systems, wide range of load variations and effects of non-linear loads result in performance degradation. Load disturbances, as the mismatched disturbances, entry the system via a channel different from the control input. Load variations are coupled with the output voltage, resulting in periodic disturbances. Meanwhile, the cost increases significantly due to the requirement of wideband current sensors. In the existing current sensorless approaches, observers are designed to reconstruct current without considering disturbances. Addressing it, a novel universal state and disturbance observer (USDO) is developed to reconstruct the inductor current and load disturbances. By integrating the estimations into the design of sliding surface, a current sensorless sliding mode controller is proposed. Rigorous stability analysis for the closed-loop system is presented. Furthermore, considering higher-order harmonics, the baseline USDO is extended to reject these harmonics. Experimental results are illustrated to verify the effectiveness of the proposed scheme.

Inspec keywords: variable structure systems; invertors; observers; control system synthesis; sensorless machine control; closed loop systems

Other keywords: closed-loop system; novel universal state and disturbance observer; matched disturbances; electric vehicle systems; mismatched periodic disturbances; current inverter system; nonlinear loads; wideband current sensors; current sensorless sliding mode control approach; USDO approach; mismatched disturbances; load disturbances; load variations; direct current–alternating current inverter

Subjects: DC-AC power convertors (invertors); Control system analysis and synthesis methods; Multivariable control systems; Control of electric power systems

References

    1. 1)
      • 19. Zou, Z., Zhou, K., Wang, Z., et al: ‘Fractional-order repetitive control of programmable AC power sources’, IET Power Electron., 2014, 7, (2), pp. 431438.
    2. 2)
      • 2. Yang, S., Lei, Q., Peng, F.Z., et al: ‘A robust control scheme for grid-connected voltage-source inverters’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 202212.
    3. 3)
      • 21. Ribas, S.P., Maccari, L.A.Jr., Pinheiro, H., et al: ‘Design and implementation of a discrete-time H-infinity controller for uninterruptible power supply systems’, IET Power Electron., 2014, 7, (9), pp. 22332241.
    4. 4)
      • 5. Ni, L., Patterson, D.J., Hudgins, J.L.: ‘High power current sensorless bidirectional 16-phase interleaved DC–DC converter for hybrid vehicle application’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 11411151.
    5. 5)
      • 11. Jung, J.W., Vu, N.T.T., Dang, D.Q., et al: ‘A three-phase inverter for a standalone distributed generation system: adaptive voltage control design and stability analysis’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 4656.
    6. 6)
      • 30. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Springer, New York, USA, 2014, 1st edn.).
    7. 7)
      • 14. Yang, Y., Wang, H., Blaabjerg, F.: ‘Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 40654076.
    8. 8)
      • 25. Ramos, R., Biel, D., Fossas, E., et al: ‘Interleaving quasi-sliding-mode control of parallel-connected buck-based inverters’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38653873.
    9. 9)
      • 1. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    10. 10)
      • 22. Cortes, P., Ortiz, G., Yuz, J.I., et al: ‘Model predictive control of an inverter with output LC filter for UPS applications’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18751883.
    11. 11)
      • 17. Yang, Y., Zhou, K., Cheng, M., et al: ‘Phase compensation multiresonant control of CVCF PWM converters’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 39233930.
    12. 12)
      • 13. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: ‘Unbalanced space vector modulation with fundamental phase shift compensation for faulty multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 72247233.
    13. 13)
      • 28. Yang, J., Li, S., Yu, X.: ‘Sliding-mode control for systems with mismatched uncertainties via a disturbance observer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 160169.
    14. 14)
      • 20. Lim, J.S., Park, C., Han, J., et al: ‘Robust tracking control of a three-phase DC-AC inverter for UPS applications’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41424151.
    15. 15)
      • 15. Cecati, C., Ciancetta, F., Siano, P.: ‘A multilevel inverter for photovoltaic systems with fuzzy logic control’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41154125.
    16. 16)
      • 23. Biel, D., Fossas, E., Guinjoan, F., et al: ‘Application of sliding-mode control to the design of a buck-based sinusoidal generator’, IEEE Trans. Ind. Electron., 2001, 48, (3), pp. 563571.
    17. 17)
      • 3. Cortes, P., Kazmierkowski, M.P., Kennel, R.M., et al: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324.
    18. 18)
      • 34. Li, S., Yang, J., Chen, W.H., et al: ‘Disturbance observer-based control: methods and applications’ (CRC Press, Boca Raton, FL, USA, 2014, 1st edn.).
    19. 19)
      • 24. Chang, E.C., Liang, T.J., Chen, J.F., et al: ‘Real-time implementation of grey fuzzy terminal sliding mode control for PWM DC–AC converters’, IET Power Electron., 2008, 1, (2), pp. 235244.
    20. 20)
      • 32. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, New Jersey, 2002, 3rd edn.).
    21. 21)
      • 26. Erbatur, K., Kawamura, A.: ‘Chattering elimination via fuzzy boundary layer tuning’. Proc. IECON, Sevilla, Spain, November 2002, pp. 21312136.
    22. 22)
      • 16. Ibrahim, Z., Levi, E.: ‘A comparative analysis of fuzzy logic and PI speed control in high-performance AC drives using experimental approach’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 12101218.
    23. 23)
      • 6. Xue, Y., Chang, L., Kjaer, S.B., et al: ‘Topologies of single-phase inverters for small distributed power generators: an overview’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13051314.
    24. 24)
      • 4. Liu, H., Li, S.: ‘Speed control for PMSM servo system using predictive functional control and extended state observer’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 11711183.
    25. 25)
      • 33. IEEE Std 519-1992: ‘IEEE recommended practices and requirements for harmonic control in electrical power systems’, 1993.
    26. 26)
      • 27. Chang, F.J., Chang, E.C., Liang, T.J., et al: ‘Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control’, IET Power Electron., 2011, 4, (1), pp. 159167.
    27. 27)
      • 7. Ahmed, K.H., Massoud, A.M., Finney, S.J., et al: ‘Sensorless current control of three-phase inverter-based distributed generation’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 919929.
    28. 28)
      • 18. Zhang, B., Zhou, K., Wang, D.: ‘Multirate repetitive control for PWM DC/AC converters’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28832890.
    29. 29)
      • 10. Pahlevaninezhad, M., Drobnik, J., Jain, P.K., et al: ‘A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 920933.
    30. 30)
      • 29. Zheng, W., Li, S., Wang, J., et al: ‘Sliding-mode control for three-phase PWM inverter via harmonic disturbance observer’. Proc. Chinese Control Conf., Hangzhou, China, July 2015, pp. 79887993.
    31. 31)
      • 31. Utkin, V., Guldner, J., Shi, J.: ‘Sliding mode control in electro-mechanical systems’ (CRC press, Boca Raton, FL, USA, 2009, 2nd edn.).
    32. 32)
      • 9. Tao, Y., Wu, Q., Wang, L., et al: ‘Voltage sensorless predictive direct power control of three-phase PWM converters’, IET Power Electron., 2016, 9, (5), pp. 10091018.
    33. 33)
      • 8. Cho, H., Yoo, S.J., Kwak, S.: ‘State observer based sensor less control using Lyapunov's method for boost converters’, IET Power Electron., 2015, 8, (1), pp. 1119.
    34. 34)
      • 12. Zhang, L., Born, R., Gu, B., et al: ‘A sensorless implementation of the parabolic current control for single-phase stand-alone inverters’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 39133921.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0569
Loading

Related content

content/journals/10.1049/iet-pel.2017.0569
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading