access icon free Design and analysis of a novel coupled inductor structure with variable coupling coefficient

This study presents a new coupled inductor magnetic structure with variable coupling coefficient. The new symmetrical magnetic structure is composed of stacked ferrite cores, where control legs are placed in the centre of the core structure, on equal distances from the outer legs. In that way, the coupling coefficient is controlled by the means of a DC current. The DC control flux is confined only to the control legs and it is equally balanced in both of the outer legs. Distribution of the control DC flux in the proposed structure is verified applying finite element analysis simulation of the three-dimensional model. Electrical properties of the new variable coupled inductor are derived applying analytical modelling and verified by experiments. Maximal variations of the controlled coupling coefficient value in respect to the different value of the leakage flux are obtained and presented. Design and experimental results are presented for application in an interleaved boost converter with a variable coupled inductor, achieving boundary conduction mode over a wide load variation.

Inspec keywords: power inductors; power convertors; ferrites; finite element analysis

Other keywords: electrical properties; finite element analysis simulation; DC current; boundary conduction mode; interleaved boost converter; coupled inductor magnetic structure; variable coupled inductor; variable coupling coefficient; stacked ferrite cores; analytical modelling; DC control flux; three-dimensional model; leakage flux; control DC flux distribution

Subjects: Power convertors and power supplies to apparatus; Transformers and reactors; Power electronics, supply and supervisory circuits; Finite element analysis

References

    1. 1)
      • 4. Thounthong, P., Sethakul, P., Rael, S., et al: ‘Design and implementation of 2-phase interleaved boost converter for fuel cell power source’, 2008.
    2. 2)
      • 10. Lai, J.-S., Chen, D.: ‘Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode’. Eighth Annual Applied Power Electronics Conf. Exposition 1993 APEC'93 Conf. Proc. 1993, 1993, pp. 267273.
    3. 3)
      • 31. Perdigão, M.S., Trovão, J.P.F., Alonso, J.M., et al: ‘Large-signal characterization of power inductors in EV bidirectional DC–DC converters focused on core size optimization’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 30423051.
    4. 4)
      • 49. Ferrites and accessories-SIFERRIT material N27, EPCOS, 10 2006.
    5. 5)
      • 26. Pinto, R.A., Alonso, J.M., Perdigão, M.S., et al: ‘A new technique to equalize branch currents in multiarray LED lamps based on variable inductors’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 521530.
    6. 6)
      • 13. Mehas, C., Coonley, K.D., Sullivan, C.R.: ‘Converter and inductor design for fast-response microprocessor power delivery’. 2000 IEEE 31st Annual Power Electronics Specialists Conf. 2000 PESC 00, 2000, vol. 3, pp. 16211626.
    7. 7)
      • 54. Kim, D.-H., Choe, G.-Y., Lee, B.-K.: ‘DCM analysis and inductance design method of interleaved boost converters’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 47004711.
    8. 8)
      • 39. Huzayyin, A.A.: ‘Utilizing the nonlinearity of a magnetic core inductor as a source of variable reactive power compensation in electric power systems’. 2008 Annual IEEE Conf. Student Paper, 2008, pp. 14.
    9. 9)
      • 48. Ferrites and accessories E 25/13/7, EPCOS, 10 2016.
    10. 10)
      • 7. Hartnett, K.J., Hayes, J.G., Egan, M.G., et al: ‘CCTT-core split-winding integrated magnetic for high-power DC–DC converters’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 49704984.
    11. 11)
      • 5. Hirakawa, M., Watanabe, Y., Nagano, M., et al: ‘High power DC/DC converter using extreme close-coupled inductors aimed for electric vehicles’. 2010 Int. Power Electronics Conf. (IPEC), 2010, pp. 29412948.
    12. 12)
      • 1. Zhu, G., McDonald, B.A., Wang, K.: ‘Modeling and analysis of coupled inductors in power converters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 13551363.
    13. 13)
      • 27. Perdigão, M.S., Alonso, J.M., Vaquero, D.G., et al: ‘Magnetically controlled electronic ballasts with isolated output: the variable transformer solution’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 41174129.
    14. 14)
      • 15. Zumel, P., Garcia, O., Cobos, J., et al: ‘Magnetic integration for interleaved converters’. 18th Annual IEEE Applied Power Electronics Conf. Exposition 2003 APEC'03, 2003, vol. 2, pp. 11431149.
    15. 15)
      • 52. Wong, P.-L., Xu, P., Yang, P., et al: ‘Performance improvements of interleaving VRMs with coupling inductors’, IEEE Trans. Power Electron., 2001, 16, (4), pp. 499507.
    16. 16)
      • 41. Zhang, L., Hurley, W.G., Wölfle, W.H.: ‘A new approach to achieve maximum power point tracking for PV system with a variable inductor’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 10311037.
    17. 17)
      • 9. Imaoka, J., Kimura, S., Martinez, W., et al: ‘A novel integrated magnetic core structure suitable for transformer-linked interleaved boost chopper circuit’, IEEJ J. Ind. Appl., 2014, 3, (5), pp. 395404.
    18. 18)
      • 28. Marques, H., Seidel, A.R., Perdigão, M.S., et al: ‘Constant-frequency magnetically controlled universal ballast with SoS compliance for TL5 fluorescent lamps’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 21632175.
    19. 19)
      • 32. Dimitrovski, A., Li, Z., Ozpineci, B.: ‘Applications of saturable-core reactors (SCR) in power systems’. 2014 IEEE PES T&D Conf. Exposition, 2014, pp. 15.
    20. 20)
      • 40. Xianmin, M., Jianze, W., Yanchao, J., et al: ‘Novel harmonic free single phase variable inductor based on active power filter strategy’. CES/IEEE Fifth Int. Power Electronics and Motion Control Conf. 2006 IPEMC 2006, 2006, vol. 3, pp. 14.
    21. 21)
      • 8. Nakahama, M., Yamamoto, M., Satake, Y.: ‘Trans-linked multi-phase boost converter for electric vehicle’. 2010 IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 24582463.
    22. 22)
      • 34. Moriconi, F., De La Rosa, F., Darmann, F., et al: ‘Development and deployment of saturated-core fault current limiters in distribution and transmission substations’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 12881293.
    23. 23)
      • 44. Yang, F., Ruan, X., Yang, Y., et al: ‘Interleaved critical current mode boost PFC converter with coupled inductor’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 24042413.
    24. 24)
      • 46. Huang, X., Lee, F.C., Li, Q., et al: ‘MHz GaN-based interleaved CRM bi-directional buck/boost converter with coupled inductor’. 2015 IEEE Applied Power Electronics Conf. Exposition (APEC), 2015, pp. 20752082.
    25. 25)
      • 22. Kislovski, A.: ‘Quasi-linear controllable inductor’, Proc. IEEE, 1987, 75, (2), pp. 267269.
    26. 26)
      • 19. Dong, Y., Sun, J., Xu, M., et al: ‘The light load issue of coupled inductor laptop voltage regulators and its solutions’. 22nd Annual IEEE Applied Power Electronics Conf. APEC 2007, 2007, pp. 15811587.
    27. 27)
      • 53. Yang, F., Ruan, X., Wu, G., et al: ‘Discontinuous current mode operation of two-phase interleaved boost DC–DC converter with coupled-inductor’, IEEE Trans. Power Electron., 2017, 33, (1), pp. 188198.
    28. 28)
      • 16. Li, Q., Dong, Y., Lee, F.C., et al: ‘High-density low-profile coupled inductor design for integrated point-of-load converters’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 547554.
    29. 29)
      • 29. Perdigão, M.S., Menke, M., Seidel, Á.R., et al: ‘A review on variable inductors and variable transformers: applications to lighting drivers’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 531547.
    30. 30)
      • 12. Huang, X., Wang, X., Nergaard, T., et al: ‘Parasitic ringing and design issues of digitally controlled high power interleaved boost converters’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13411352.
    31. 31)
      • 36. Bolduc, L., Pare, G.: ‘Self-regulated transformer–inductor with air gaps’. US Patent 4,766,365, 23 August 1988.
    32. 32)
      • 43. Orietti, E., Mattavelli, P., Spiazzi, G., et al: ‘Two-phase interleaved LLC resonant converter with current-controlled inductor’. Power Electronics Conf. 2009 COBEP'09 Brazilian, 2009, pp. 298304.
    33. 33)
      • 18. Wei, J., Lee, F.C.: ‘Two-stage voltage regulator for laptop computer CPUs and the corresponding advanced control schemes to improve light-load performance’. 19th Annual IEEE Applied Power Electronics Conf. Exposition 2004 APEC'04, 2004, vol. 2, pp. 12941300.
    34. 34)
      • 3. Kosai, H., McNeal, S., Jordan, B., et al: ‘Coupled inductor characterization for a high performance interleaved boost converter’, IEEE Trans. Magn., 2009, 45, (10), pp. 48124815.
    35. 35)
      • 24. Hu, Y., Huber, L., Jovanović, M.M.: ‘Single-stage, universal-input AC/DC LED driver with current-controlled variable PFC boost inductor’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 15791588.
    36. 36)
      • 42. Alonso, J., Perdigao, M., Gacio, D., et al: ‘Magnetic control of dc–dc resonant converters provides constant frequency operation’, Electron. Lett., 2010, 46, (6), pp. 440442.
    37. 37)
      • 50. Ludwig, G.W., El-Hamamsy, S.-A.: ‘Coupled inductance and reluctance models of magnetic components’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 240250.
    38. 38)
      • 45. Cheng, C.-A., Cheng, H.-L., Chung, T.-Y.: ‘A novel single-stage high-power-factor led street-lighting driver with coupled inductors’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 30373045.
    39. 39)
      • 30. Lu, D.D.-C., Liu, J.C., Poon, F.N., et al: ‘A single phase voltage regulator module (VRM) with stepping inductance for fast transient response’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 417424.
    40. 40)
      • 6. Hartnett, K.J., Rylko, M.S., Hayes, J.G., et al: ‘A comparison of classical two phase (2L) and transformer–coupled (XL) interleaved boost converters for fuel cell applications’. 2010 25th Annual IEEE Applied Power Electronics Conf. Exposition (APEC), 2010, pp. 787793.
    41. 41)
      • 21. Sichirollo, F., Alonso, J.M., Spiazzi, G.: ‘Use of current controlled mutual inductor to limit recycling current in the AHB-Flyback converter’. IECON 2012 – 38th Annual Conf. IEEE Industrial Electronics Society, 2012, pp. 46114616.
    42. 42)
      • 51. Lange, D.: ‘Calculation of the reversible permeability of gapped cores from measured ring core data’, J. Phys. IV, 1997, 7, (C1), pp. C1137.
    43. 43)
      • 47. Baguley, C., Carsten, B., Madawala, U.: ‘The effect of dc bias conditions on ferrite core losses’, IEEE Trans. Magn., 2008, 44, (2), pp. 246252.
    44. 44)
      • 23. Medini, D., Ben-Yaakov, S.: ‘A current-controlled variable-inductor for high frequency resonant power circuits’. Ninth Annual Applied Power Electronics Conf. Exposition 1994 APEC'94 Conf. Proc. 1994, 1994, pp. 219225.
    45. 45)
      • 14. Wong, P.-L., Lee, F.C., Jia, X., et al: ‘A novel modeling concept for multi-coupling core structures’. 16th Annual IEEE Applied Power Electronics Conf. Exposition 2001 APEC 2001, 2001, vol. 1, pp. 102108.
    46. 46)
      • 38. Washburn, R.D., McClanahan, R.F.: ‘Non-saturating magnetic amplifier controller’. US Patent 4,841,428, 20 June 1989.
    47. 47)
      • 20. Alonso, J.M., Perdigão, M.S., Vaquero, D.G., et al: ‘Analysis, design, and experimentation on constant-frequency DC–DC resonant converters with magnetic control’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 13691382.
    48. 48)
      • 25. Costa, V.S., Perdigão, M., Mendes, A., et al: ‘Evaluation of a variable inductor-controlled LLC resonant converter for battery charging applications’. IECON 2016 – 42nd Annual Conf. IEEE Industrial Electronics Society, 2016, pp. 56335638.
    49. 49)
      • 33. Nikulshin, Y., Wolfus, Y., Friedman, A., et al: ‘Saturated core fault current limiters in a live grid’, IEEE Trans. Appl. Supercond., 2016, 26, (3), pp. 14.
    50. 50)
      • 35. Carlsson, L., Flisberg, G., Weimers, L.: ‘Recent evolution in classic HVDC’. Fourth Int. Conf. Power Transmission & Distribution Technology, 2003.
    51. 51)
      • 17. Labouré, E., Cuniere, A., Meynard, T., et al: ‘A theoretical approach to intercell transformers, application to interleaved converters’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 464474.
    52. 52)
      • 2. Wen, W., Lee, Y.-S.: ‘A two-channel interleaved boost converter with reduced core loss and copper loss’. 2004 IEEE 35th Annual Power Electronics Specialists Conf. 2004 PESC 04, 2004, vol. 2, pp. 10031009.
    53. 53)
      • 11. Zhang, M.T., Jovanovic, M.M., Lee, F.C.: ‘Design considerations and performance evaluations of synchronous rectification in flyback converters’, IEEE Trans. Power Electron., 1998, 13, (3), pp. 538546.
    54. 54)
      • 37. Vollin, J., Tan, F.D., Cuk, S.: ‘Magnetic regulator modeling’. Eighth Annual Applied Power Electronics Conf. Exposition 1993 APEC'93 Conf. Proc. 1993, 1993, pp. 604611.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0566
Loading

Related content

content/journals/10.1049/iet-pel.2017.0566
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading