http://iet.metastore.ingenta.com
1887

Modified hybrid modulation strategy with power balance control for H-bridge hybrid cascaded seven-level inverter

Modified hybrid modulation strategy with power balance control for H-bridge hybrid cascaded seven-level inverter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Compared with the traditional cascaded H-bridge multi-level inverters, the hybrid cascaded multi-level inverters have been receiving attention because they can generate more levels with the same number of power cells. However, with the general hybrid pulse width modulation (PWM), the output power distribution between the high-voltage and low-voltage H-bridge cells is extremely uneven in low amplitude modulation, and it may appear that the high-voltage cell feeds power into the low-voltage cell in some modulation ratio intervals causing the low-voltage cell capacitor voltage boost. To avoid this problem, a method of a modified hybrid PWM strategy with power balance control is proposed. It has achieved the output power balance of H-bridge cells in full amplitude modulation, the occurrence of the phenomena of extremely uneven output power distribution between the high- and low-voltage cells in low amplitude modulation is avoided, and the performance of the inverter is improved. Simulation and experimental results verify the correctness and feasibility of the proposed strategy.

References

    1. 1)
      • 1. Mortezaei, A., Simoes, M., Bubshait, A., et al: ‘Multifunctional control strategy for asymmetrical cascaded H-bridge inverter in microgrid applications’, IEEE Trans. Ind. Appl., 2016, PP, (99), p. 1.
    2. 2)
      • 2. Kim, S.M., Lee, J.S., Lee, K.B.: ‘A modified level-shifted PWM strategy for fault-tolerant cascaded multilevel inverters with improved power distribution’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 72647274.
    3. 3)
      • 3. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    4. 4)
      • 4. Abu-Rub, H., Holtz, J., Rodriguez, J., et al: ‘Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25812596.
    5. 5)
      • 5. Nademi, H., Das, A., Burgos, R., et al: ‘A new circuit performance of modular multilevel inverter suitable for photovoltaic conversion plants’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 393404.
    6. 6)
      • 6. Noman, A., Addoweesh, K., Al-Haddad, K.: ‘Cascaded multilevel inverter topology with high frequency galvanic isolation for grid connected PV system’. IECON 2016–42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 30303037.
    7. 7)
      • 7. Caluisi, C., Cecati, C., Piccolo, A., et al: ‘Multilevel inverters and fuzzy logic for fuel cells power conditioning and control’. 2010 IEEE Int. Symp. on Industrial Electronics, Bari, 2010, pp. 27392744.
    8. 8)
      • 8. Edpuganti, A., Rathore, A.: ‘Fundamental switching frequency optimal pulsewidth modulation of medium-voltage cascaded seven-level inverter’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 34853492.
    9. 9)
      • 9. Kumar, A.S., Poddar, G., Ganesan, P.: ‘Control strategy to naturally balance hybrid converter for variable-speed medium-voltage drive applications’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 866876.
    10. 10)
      • 10. Adam, G., Abdelsalam, I., Ahmed, K., et al: ‘Hybrid multilevel converter with cascaded H-bridge cells for HVDC applications: operating principle and scalability’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 6577.
    11. 11)
      • 11. Elias, M., Rahim, N., Ping, H., et al: ‘Asymmetrical cascaded multilevel inverter based on transistor-clamped H-bridge power cell’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 42814288.
    12. 12)
      • 12. Manjrekar, M., Lipo, T.: ‘A hybrid multilevel inverter topology for drive applications’. Applied Power Electronics Conf. and Exposition, 1998 (APEC'98), Conf. Proc. 1998, Thirteenth Annual, Anaheim, CA, 1998, vol. 2, pp. 523529.
    13. 13)
      • 13. Khoucha, F., Lagoun, S.M., Marouani, K., et al: ‘Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 892899.
    14. 14)
      • 14. Jana, P., Chattopadhyay, S., Maiti, S., et al: ‘Hybrid modulation technique for binary asymmetrical cascaded multilevel inverter for PV application’. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, 2017, pp. 16.
    15. 15)
      • 15. Lopez, M.G., Moran, L.T., Espinoza, J.C., et al: ‘Performance analysis of a hybrid asymmetric multilevel inverter for high voltage active power filter applications’. Proc. of the 29th Annual Conf. of the IEEE Industrial Electronics Society (IECON), Roanoke, VA, USA, 2003, pp. 10501055.
    16. 16)
      • 16. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    17. 17)
      • 17. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    18. 18)
      • 18. McGrath, B.P., Holmes, D.G.: ‘Multicarrier PWM strategies for multilevel inverters’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 858867.
    19. 19)
      • 19. Saeedifard, M., Barbosa, P, Steimer, P.K.: ‘Operation and control of a hybrid seven-level converter’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 652660.
    20. 20)
      • 20. Manjrekar, M., Steimer, P., Lipo, T.: ‘Hybrid multilevel power conversion system: a competitive solution for high-power applications’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 834841.
    21. 21)
      • 21. Chen, Z., Wang, Z., Liu, Y., et al: ‘A unipolar PWM strategy for hybrid cascaded multilevel converters’. Industrial Electronics Society, IECON 2014 – 40th Annual Conf. of the IEEE, 2015, pp. 11541160.
    22. 22)
      • 22. Ren, L., Chunying, G., Kaiyi, H., et al: ‘Modified hybrid modulation scheme with even switch thermal distribution for H-bridge hybrid cascaded inverters’, IET Power Electron., 2017, 10, (2), pp. 261268.
    23. 23)
      • 23. Gupta, K.K., Bhatnagar, P, Vahedi, H., et al: ‘Carrier based PWM for even power distribution in cascaded H-bridge multilevel inverters within single power cycle’.  Industrial Electronics Society, IECON 2016 – 42nd Annual Conf. of the IEEE, Florence, Italy, 2016, pp. 64706475.
    24. 24)
      • 24. Tsunoda, A., Hinago, Y., Koizumi, H.: ‘Level- and phase-shifted PWM for seven-level switched-capacitor inverter using series/parallel conversion’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 40114021.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0558
Loading

Related content

content/journals/10.1049/iet-pel.2017.0558
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address