http://iet.metastore.ingenta.com
1887

Comparative study between different optimisation techniques for finding precise switching angle for SHE-PWM of three-phase seven-level cascaded H-bridge inverter

Comparative study between different optimisation techniques for finding precise switching angle for SHE-PWM of three-phase seven-level cascaded H-bridge inverter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Selective harmonic elimination pulse-width modulation (SHE-PWM) works at low-frequency switching, which reduces switching losses, device stress, and increases energy conversion efficiency. So, it can be an effective control strategy for multilevel inverter working on medium-voltage, high-power industrial energy conversion application. It provides desired output voltage by retaining the requested fundamental component as well as eliminating some low-order harmonics. The application of SHE-PWM in industries is having an influence on precise solvability of complex and non-linear equations. This study presents two recently reported optimisation techniques, namely backtracking search algorithm and differential search algorithm (DSA) for obtaining a more accurate solution of the harmonics elimination problem. The superiority of the proposed optimisation algorithms over the well known ancient algorithm such as genetic algorithm, BEE algorithm and particle swarm optimisation have been established by a comparative study with respect to the possibility of attaining global minima, the rank of convergence rate, and inverter performance analysis. Simulation and experimental results validate the efficacy of the DSA optimisation technique for calculating more precise switching angles that totally eliminate 5th- and 7th-order harmonics with fulfilling the requested fundamental component.

References

    1. 1)
      • 1. Brando, G., Dannier, A., Pizzo, A.D., et al: ‘Torque derivative control in induction motor drives supplied by multilevel inverters’, IET Power Electron., 2016, 9, (11), pp. 22492261.
    2. 2)
      • 2. Luiz, A.S.A., Filho, B.J.C.: ‘A new design of selective harmonic elimination for adjustable speed operation of AC motors in mining industry’. IEEE Int. Conf. Applied Power Electronics Conf. Exposition (APEC), March 2017, pp. 607614.
    3. 3)
      • 3. Steczek, M., Chudzik, P., Szeląg, A.: ‘Combination of SHE and SHM – PWM techniques for VSI DC-link current harmonics control in railway applications’, IEEE Trans. Ind. Electron., 2017, 64, (10), pp. 76667678, (DOI 10.1109/TIE.2017.2694357).
    4. 4)
      • 4. Saad, H., Fillion, Y., Deschanvres, S., et al: ‘On resonances and harmonics in HVDCMMC station connected to AC grid’, IEEE trans. Power Deliv., 2017, 32, (3), pp. 15651573.
    5. 5)
      • 5. Xiao, B., Hang, L., Mei, J., et al: ‘Modular cascaded H-bridge multilevel PV inverter with distributed MPPT for grid-connected applications’, IEEE trans. Ind. Appl., 2015, 51, (2), pp. 17221731.
    6. 6)
      • 6. Buccella, C., Cecati, C., Cimoroni, M.G., et al: ‘A selective harmonic elimination method for 5-level converters for distributed generation’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (2), pp. 775783.
    7. 7)
      • 7. Franquelo, L.G., Rodriguez, J., Leon, J.I., et al: ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 2839.
    8. 8)
      • 8. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    9. 9)
      • 9. Marchesoni, M., Mazzucchelli, M., Tenconi, S.: ‘A nonconventional power inverter for plasma stabilization’, IEEE trans. Power Electron., 1990, 5, (2), pp. 212219.
    10. 10)
      • 10. Meynard, T., Foch, H.: ‘Multi-level choppers for high voltage applications’, Eur. Power Electron. J., 1992, 2, (1), pp. 4550.
    11. 11)
      • 11. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point-clamped PWM inverter’, IEEE trans. Ind. Appl., 1981, IA-17, (5), pp. 518523.
    12. 12)
      • 12. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters principles and practice’ (Wiley-IEEE Press, NJ, 2003).
    13. 13)
      • 13. Sirisukprasert, S., Lai, J.S., Liu, T.H.: ‘Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters’, IEEE trans. Ind. Electron., 2002, 49, (4), pp. 875881.
    14. 14)
      • 14. Tang, T., Han, J., Tan, X.: ‘Selective harmonic elimination for a cascade multilevel inverter’. Proc. IEEE Int. Symp. Industrial Electronics, 2006, vol. 2, pp. 977981.
    15. 15)
      • 15. Chiasson, J.N., Tolbert, L.M., Mckenzie, K., et al: ‘Control of a multilevel converter using resultant theory’, IEEE trans. Control Syst. Technol., 2003, 11, (3), pp. 345354.
    16. 16)
      • 16. Chiasson, J.N., Tolbert, L.M., McKenzie, K.J., et al: ‘Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants’, IEEE trans. Control Syst. Technol., 2005, 13, (2), pp. 216223.
    17. 17)
      • 17. Yang, K., Zhang, Q., Yuan, R., et al: Selective harmonic elimination with Groebner bases and symmetric polynomials’, IEEE trans. Power Electron., 2016, 31, (4), pp. 27422752.
    18. 18)
      • 18. Yang, K., Zhang, Q., Zhang, J., et al: ‘Unified selective harmonic elimination for multilevel converters’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 15791590.
    19. 19)
      • 19. Dahidah, M.S.A., Agelidis, V.G.: ‘Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: a generalized formula’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 16201630.
    20. 20)
      • 20. Salehi, R., Farokhnia, N., Abedi, M., et al: ‘Elimination of low order harmonics in multilevel inverter using genetic algorithm’, J. Power Electron., 2011, 11, (2), pp. 132139.
    21. 21)
      • 21. Farokhnia, N., Fathi, S.H., Salehi, R., et al: ‘Improved selective harmonic elimination pulse-width modulation strategy in multilevel inverters’, IET Power Electron., 2012, 5, (9), pp. 19041911.
    22. 22)
      • 22. Ray, R.N., Chatterjee, D., Goswami, S.K.: ‘Harmonics elimination in a multilevel inverter using the particle swarm optimisation technique’, IET Power Electron., 2009, 2, (6), pp. 646652.
    23. 23)
      • 23. Ray, R.N., Chatterjee, D., Goswami, S.K.: ‘An application of PSO technique for harmonic elimination in a PWM inverter’, Appl. Soft Comput., 2009, 9, pp. 13151320.
    24. 24)
      • 24. Ray, R.N., Chatterjee, D., Goswami, S.K.: ‘A PSO based optimal switching technique for voltage harmonic reduction of multilevel inverter’, Expert Syst. Appl., 2010, 37, pp. 77967801.
    25. 25)
      • 25. Taghizadeh, H., Hagh, M.T.: ‘Harmonic minimization in multilevel inverters using modified species-based particle swarm optimization’, IEEE Trans. Power Electron., 2009, 24, (10), pp. 22592267.
    26. 26)
      • 26. Taghizadeh, H., Hagh, M.T.: ‘Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 36783684.
    27. 27)
      • 27. Gupta, V.K., Mahanty, R.: ‘Optimized switching scheme of cascaded H-bridge multilevel inverter using PSO’, Electr. Power Energy Syst., 2015, 64, pp. 699707.
    28. 28)
      • 28. Kavousi, A., Vahidi, B., Salehi, R., et al: ‘Application of the BEE algorithm for selective harmonic elimination strategy in multilevel inverters’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 16891696.
    29. 29)
      • 29. Kumle, A.N., Fathi, S.H., Jabbarvaziri, F., et al: ‘Application of memetic algorithm for selective harmonic elimination in multi-level inverters’, IET Power Electron., 2015, 8, (9), pp. 17331739.
    30. 30)
      • 30. Etesami, M.H., Farokhnia, N., Fathi, S.H.: ‘Colonial competitive algorithm development toward harmonic minimization in multilevel inverters’, IEEE Trans. Ind. Inf., 2015, 11, (2), pp. 459466.
    31. 31)
      • 31. Salehi, R., Vahidi, B., Farokhnia, N., et al: ‘Harmonic elimination and optimization of stepped voltage of multilevel inverter by bacterial foraging algorithm’, J. Electr. Eng. Technol., 2010, 5, (4), pp. 545551.
    32. 32)
      • 32. Babu, T.S., Priya, K., Maheswaran, D., et al: ‘Selective voltage harmonic elimination in PWM inverter using bacterial foraging algorithm’, Swarm Evol. Comput., 2015, 20, pp. 7481.
    33. 33)
      • 33. Sundareswaran, K., Jayant, K., Shanavas, T.N.: ‘Inverter harmonic elimination through a colony of continuously exploring ants’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 25582565.
    34. 34)
      • 34. Sundari, M.G., Rajaram, M., Balaraman, S.: ‘Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources’, Appl. Soft Comput., 2016, 41, pp. 169179.
    35. 35)
      • 35. Lou, H., Mao, C., Wang, D., et al: ‘Fundamental modulation strategy with selective harmonic elimination for multilevel inverters’, IET Power Electron., 2014, 7, (8), pp. 21732181.
    36. 36)
      • 36. Moeini, A., Iman-Eini, H., Bakhshizadeh, M.: ‘Selective harmonic mitigation-pulse-width modulation technique with variable DC-link voltages in single and three-phase cascaded H-bridge inverters’, IET Power Electron., 2014, 7, (4), pp. 924932.
    37. 37)
      • 37. Civicioglu, P.: ‘Backtracking search optimization algorithm for numerical optimization problems’, Appl. Math. Comput., 2013, 219, (15), pp. 81218144.
    38. 38)
      • 38. Civicioglu, P.: ‘Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm’, Comput. Geosci., 2012, 46, (15), pp. 229247.
    39. 39)
      • 39. Trianni, V., Tuci, E., Passino, K.M., et al: ‘Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives’, Swarm Intell., 2011, 5, (1), pp. 318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0530
Loading

Related content

content/journals/10.1049/iet-pel.2017.0530
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address