access icon free Selective harmonic eliminated V/f speed control of single-phase induction motor

This study presents a new energy efficient V/f speed control of single-phase induction motor. The method is implemented with a single-phase inverter in which extreme learning machine technique is used to achieve selective harmonic elimination pulse width modulation. The objective is to adjust the speed of the single-phase induction motor while eliminating undesired low-order harmonics. Algorithm is developed using MATLAB/Simulink high-speed adaptation was obtained even at low- and high-speed regions. The results showed the effectiveness of the proposed method. The reduction in the total harmonic distortion is achieved in all operation range of V/f speed control.

Inspec keywords: harmonic distortion; induction motors; angular velocity control; learning (artificial intelligence); machine control; PWM invertors; power conversion harmonics

Other keywords: low-speed regions; energy efficient V/f speed control; single-phase induction motor; selective harmonic elimination pulse width modulation; single-phase inverter; undesired low-order harmonics elimination; high-speed regions; extreme learning machine technique; selective harmonic eliminated V/f speed control; total harmonic distortion; speed adjustment; MATLAB-Simulink high-speed adaptation

Subjects: Velocity, acceleration and rotation control; Control of electric power systems; Asynchronous machines; Knowledge engineering techniques; DC-AC power convertors (invertors)

References

    1. 1)
      • 9. Deniz, E., Aydogmus, O., Aydogmus, Z.: ‘Implementation of ANN-based SHE-PWM using hybrid genetic algorithm-based optimization’, Measurement, 2016, 85, pp. 3242.
    2. 2)
      • 23. Huang, G.B., Zhou, H., Ding, X., et al: ‘Extreme learning machine for regression and multiclass classification’, IEEE Trans. Syst., Man Cybern. B, Cybern., 2012, 42, (2), pp. 513529.
    3. 3)
      • 18. Chen, J.W., Liang, T.J.: ‘A novel algorithm in solving nonlinear equations for programmed PWM inverter to eliminate harmonics’. 23rd Int. Conf. Industrial Electronics, Control and Instrumentation, New Orleans, USA, November 1997, pp. 698703.
    4. 4)
      • 4. Bose, B.K.: ‘Modern power electronics and AC drives’ (Prentice-Hall, PTR, New Jersey, 2002).
    5. 5)
      • 33. Savitha, R., Al Mamun, A.: ‘Meta-cognitive extreme learning machine for regression problems’. Cognitive Computing and Information Processing, Mysore, India, August 2016, pp. 16.
    6. 6)
      • 7. Tuncer, S., Tatar, Y., Guldemir, H.: ‘A SHE-PWM technique with constant V/f for multilevel inverters’, J. Polytech., 2005, 8, (2), pp. 123130.
    7. 7)
      • 26. Huang, G.B.: ‘Learning capability and storage capacity of two hidden-layer feedforward networks’, IEEE Trans. Neural Netw., 2003, 14, (2), pp. 274281.
    8. 8)
      • 15. Czarkowski, D., Chudnovsky, D.V., Chudnovsky, G.V., et al: ‘Solving the optimal PWM problem for single-phase inverters’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2002, 49, (4), pp. 465475.
    9. 9)
      • 21. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    10. 10)
      • 14. Wells, J.R., Nee, B.M., Chapman, P.L., et al: ‘Selective harmonic control: a general problem formulation and selected solutions’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13371345.
    11. 11)
      • 2. Aftandilian, L., Mangtani, V., Dubhashi, A.: ‘Advances in power semiconductors and packaging lead to a compact integrated power stage for ac drives’. WESCON, Santa Clara, CA, USA, November 1997, pp. 334339.
    12. 12)
      • 31. Duo, L., Haiying, D., Lixia, Y.: ‘Short term photovoltaic power EMD and prediction based on ELM’, Renew. Energy, 2016, 2, (9), pp. 5761.
    13. 13)
      • 24. Huang, G.B.: ‘What are extreme learning machines? filling the gap between Frank Rosenblatt's dream and John von Neumann's puzzle’, Cogn. Comput., 2015, 7, (3), pp. 263278.
    14. 14)
      • 20. Filho, F., Maia, H.Z., Mateus, T.H.A., et al: ‘Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 19551962.
    15. 15)
      • 29. Li, G.X.: ‘Application of extreme learning machine algorithm in the regression fitting’. Int. Conf. Information System and Artificial Intelligence, Hong Kong, China, June 2016, pp. 419422.
    16. 16)
      • 8. Duranay, Z.B., Guldemir, H.: ‘Fuzzy logic based harmonic elimination in single phase inverters’. 2017 IEEE XXVI Int. Scientific Conf. ‘Electronics-ET2017’, Sozopol, Bulgaria, September 2017.
    17. 17)
      • 5. Collins, E.R.: ‘Torque and slip behaviour of single-phase induction motors driven from variable-frequency supplies’, IEEE Trans. Ind. Appl., 1992, 28, (3), pp. 710715.
    18. 18)
      • 22. Huang, G.B., Wang, D.H., Lan, Y.: ‘Extreme learning machines: a survey’, Int. J. Mach. Learn. Cybern., 2011, 2, (2), pp. 107122.
    19. 19)
      • 25. Ferrari, S., Stengel, R.F.: ‘Smooth function approximation using neural networks’, IEEE Trans. Neural Netw., 2005, 16, (1), pp. 2438.
    20. 20)
      • 3. Sampathkumar, A.: ‘Speed control of single phase induction motor using V/f technique’, Middle-East J. Sci. Res., 2013, 16, (12), pp. 18071812.
    21. 21)
      • 6. Chiasson, J.N., Tolbert, L.M., McKenzie, K.J., et al: ‘A complete solution to the harmonic elimination problem’, IEEE Trans. Power Electron., 2004, 19, (2), pp. 491499.
    22. 22)
      • 28. Huang, G.B., Chen, L., Siew, C.K.: ‘Universal approximation using incremental constructive feedforward networks with random hidden nodes’, IEEE Trans. Neural Netw.., 2006, 17, (4), pp. 879892.
    23. 23)
      • 10. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: a new learning scheme of feedforward neural networks’. Int. Joint Conf. Neural Networks, Budapest, Hungary, July 2004, pp. 985990.
    24. 24)
      • 12. Ambekar, S.S., Chaudhari, M.A.: ‘Intelligent SHE controller for single phase power electronic inverter’. Int. Conf. Advances in Computer, Electronics and Electrical Engineering, Mumbai, India, March 2012, pp. 339343.
    25. 25)
      • 27. Tamura, S., Tateishi, M.: ‘Capabilities of a four-layered feedforward neural network: four layers versus three’, IEEE Trans. Neural Netw., 1997, 8, (2), pp. 251255.
    26. 26)
      • 13. Fathabadi, H.: ‘Novel feedback-based selected harmonic elimination technique for single-phase symmetric PWM inverters’, EPE J., 2015, 25, (1), pp. 2835.
    27. 27)
      • 16. Abdelhamid, T.H., El-Naggar, K.: ‘Optimum estimation of single phase inverter's switching angles using genetic based algorithm’, Alexandria Eng. J., 2005, 44, (5), pp. 751759.
    28. 28)
      • 30. Xuemei, J., Junwei, G., Xin, L., et al: ‘Research on short term traffic flow forecasting based on ELM algorithm’, J. Qiingdao Univ. (Eng. Technol. Ed.), 2015, 3, pp. 6368.
    29. 29)
      • 19. Abdel-Qawee, I., Abdel-Rahim, N., Hasannen, K., et al: ‘Selective harmonic elimination PWM voltage source inverter based on genetic algorithm’. Recent Trends in Energy Systems Conf., Cairo, Egypt, October 2015, pp. 115134.
    30. 30)
      • 11. Holmes, D.G., Kotsopoulos, A.: ‘Variable speed control of single and two phase induction motors using a three phase voltage source inverter’. IEEE Industry Applications Society Annual Meeting, Toronto, Canada, October 1993, pp. 613620.
    31. 31)
      • 1. Rocha, R., Martins Filho, L.S., De Melo, J.C.D.: ‘A speed control for variable-speed single-phase induction motor drives’. Int. Symp. Industrial Electronics, Dubrovnik, Croatia, June 2005, pp. 4348.
    32. 32)
      • 32. Rao, C.R., Mitra, S.K.: ‘Generalized inverse of matrices and its applications’ (Wiley, New York, 1971).
    33. 33)
      • 17. Keerthivasan, K., Narayanan, M., Deve, V.S., et al: ‘Estimation of optimal single phase inverter's switching angles using pattern search method’. Int. Conf. Computer Communication and Informatics, Coimbatore, India, January 2012, pp. 1012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0511
Loading

Related content

content/journals/10.1049/iet-pel.2017.0511
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading