http://iet.metastore.ingenta.com
1887

17-level inverter with low component count for open-end induction motor drives

17-level inverter with low component count for open-end induction motor drives

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a 17-level inverter-based induction motor drive for high-resolution multilevel voltage space-vector (SV) generation. The proposed topology consists of a three-level inverter and a seven-level inverter connected to an open-end winding induction machine. The two inverters are powered by two unequal DC supplies, resulting in a low component count, with just 12 switches and three floating capacitors per phase. The voltage SVs applied by the two inverters are chosen to eliminate circulating power flow and prevent DC bus overcharging. In addition, the switching states of both inverters are chosen in order to keep voltages of all floating capacitors well-controlled. Since the capacitors voltages are controlled using the phase currents, additional pre-charging circuitry is not required. A modulation scheme using level-shifted carriers has also been developed, which can be used with both V/f control and d–q control. The high-voltage inverter has a low effective switching frequency and the low-voltage inverter has a high effective switching frequency, reducing the switching loss. The included results of steady-state and transient testing of an experimental prototype demonstrate that the proposed scheme is suited for industrial drives and traction applications.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0492
Loading

Related content

content/journals/10.1049/iet-pel.2017.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address