Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Lagrangian dynamics model and practical implementation of an integrated transformer in multi-phase LLC resonant converter

In conventional arrangements of three-phase LLC converters, there are at least three magnetic components that occupy a considerable volume and mass of the power converter. Although, the three-phase LLC topology has many advantages over the single-phase one, circuit designers tend to select the single-phase topology because it has the minimal number of magnetic components. The purpose of this study is to reduce the number of the magnetic components of the three-phase topology, by integrating the three-discrete transformers into a single magnetic core, based on a theoretical framework. Lagrangian dynamics is applied to theoretically prove that it is possible to replace the three-discrete transformers by a single integrated transformer. The Lagrangian dynamics theory allowed us to derive a physically motivated model for the integrated transformer, in which each component of the integrated transformer has its own Lagrangian parameter. The Lagrangian model reveals that in a symmetrical design, there is no interphase coupling, and as a result the magnetic components can be downsized owing to the ac flux cancellation. Along with the theoretical discussion, the practical merits of implementing the integrated transformer is reported. Furthermore, the experimental tests are conducted utilizing a 500 W–390 V/12 V–200 kHz prototype.

References

    1. 1)
      • 22. Lanczos, C.: ‘The variation principle of mechanics’ (Mineola, NY, Dover, 1970), pp. 125128.
    2. 2)
      • 24. Large size ferrite cores for high power, TDK. Available at https://product.tdk.com/info/en/catalog/datasheets/ferrite_mz_large_e_en.pdf.
    3. 3)
      • 23. Kawamura, K.: ‘Electromagnetism’ (Tokyo, Japan, Iwanami, 1994), pp. 218223(in Japanese).
    4. 4)
      • 7. Burton, E.A., Schrom, G., Paillet, F., et al: ‘FIVR – fully integrated voltage regulators on 4th generation Intel® Core™ SoCs’. Proc. IEEE Applied Power Electron. Conf. Expo. (APEC), March 2014, pp. 432439.
    5. 5)
      • 9. Imaoka, J., Kimura, S., Itoh, Y., et al: ‘Feasible evaluations of coupled multilayered chip inductor for POL converters’, IEEJ J. Ind. Appl., 2015, 4, (3), pp. 126135.
    6. 6)
      • 27. Orietti, E., Mattavelli, P., Spiazzi, G., et al: ‘Current sharing in three phase LLC interleaved resonant converter’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), September 2009, pp. 11451152.
    7. 7)
      • 19. Umetani, K., Yamamoto, M., Hiraki, E.: ‘Lagrangian-based derivation of a novel sliding-mode control for synchronous buck converters’, IEEJ Trans. Ind. Appl., 2015, 4, (6), pp. 728729.
    8. 8)
      • 25. Ferrite core for switching power supplies, TDK. Available at product.tdk.com/info/en/catalog/datasheets/ferrite_mz_sw_e_en.pdf/.
    9. 9)
      • 18. Umegami, H., Umetani, K., Yamamoto, M., et al: ‘Lagrangian-based equivalent circuit of basic electric field coupling wireless power transfer system’, IEEJ Trans. Electr. Electron. Eng., 2015, 10, pp. S168S170.
    10. 10)
      • 26. Allied Electronics Co. Ltd, USA: ‘Passive components’. Available at http://www.alliedelec.com/passive-components/.
    11. 11)
      • 16. Umetani, K.: ‘Lagrangian method for deriving electrically dual power converters applicable to nonplanar circuit topologies’, IEEJ Trans. Electr. Electron. Eng., 2016, 11, pp. 521530.
    12. 12)
      • 3. Hasuke, Y., Sekine, H., Katano, K., et al: ‘Development of boost converter for MIRAI’. SAE Technical Paper, April 2015, 6 pp.
    13. 13)
      • 14. Martinez, W., Noah, M., Endo, S., et al: ‘Three-phase LLC converter with integrated magnetics’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), September 2016, pp. 18.
    14. 14)
      • 10. Hartnett, K.J., Hayes, J.G., Egan, M.G., et al: ‘Comparison of 8-kW CCTT IM and discrete inductor interleaved boost converter for renewable energy applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24552469.
    15. 15)
      • 8. Li, Q., Dong, Y., Lee, F.C., et al: ‘High-density low-profile coupled inductor design for integrated point-of-load converters’, IEEE Trans. Power Electron., 2012, 28, (1), pp. 547554.
    16. 16)
      • 2. Kuypers, M.: ‘Application of 48 volt for mild hybrid vehicles and high power loads’. SAE Technical Paper, April 2014, 8 pp.
    17. 17)
      • 11. Tseng, K., Huang, C.: ‘High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 13111319.
    18. 18)
      • 13. Noah, M., Kimura, S., Endo, S., et al: ‘A novel three-phase LLC resonant converter with integrated magnetics for lower turn-off losses and higher power density’. Conf. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), March 2017, pp. 18.
    19. 19)
      • 15. Umetani, K.: ‘A generalized method for Lagrangian modeling of power conversion circuit with integrated magnetic components’, IEEJ Trans. Electric. Electron. Eng., 2012, 7, pp. 146152.
    20. 20)
      • 28. Orietti, E., Mattavelli, P., Spiazzi, G., et al: ‘Analysis of multi-phase LLC resonate converter’. Brazilian Power Electronics Conf., December 2009.
    21. 21)
      • 12. Wong, L., Lee, Y., Cheng, D.K., et al: ‘Two-phase forward converter using an integrated magnetic component’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (4), pp. 12941310.
    22. 22)
      • 17. Ishihara, M., Umetani, K., Umegani, H., et al: ‘Quasi-duality between SS and SP topologies of basic electric field coupling wireless power transfer system’, IET Electron. Lett., 2016, 52, (25), pp. 20572059.
    23. 23)
      • 6. Hartnett, K.J., Hayes, J.G., Egan, M.G., et al: ‘CCTT-core split-winding integrated magnetic for high-power DC-DC converters’, IEEE Trans. Power Electron., 2013, 28, pp. 49704984.
    24. 24)
      • 1. Magambo, J., Bakri, R., Margueron, X., et al: ‘Planar magnetic components in more electric aircraft: review of technology and key parameters for DC-DC power electronic converter’, IEEE Trans. Transport. Electrif., 2017, PP, (99), pp. 113.
    25. 25)
      • 21. Umetani, K., Yamamoto, M., Hiraki, E.: ‘Simple flux-based Lagrangian formulation to model nonlinearity of concentrated winding switched reluctance motors’, IET Electron. Lett., 2015, 51, (24), pp. 19841986.
    26. 26)
      • 20. Umetani, K., Imaoka, J., Yamamoto, M., et al: ‘Evaluation of the Lagrangian method for deriving equivalent circuits of integrated magnetic components: a case study using the integrated winding coupled inductor’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 547555.
    27. 27)
      • 4. Hirakawa, M., Nagano, M., Watanabe, Y., et al: ‘High power density DC/DC converter using the close-coupled inductors’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), September 2009, pp. 17601767.
    28. 28)
      • 5. Pavlovský, M., Guidi, G., Kawamura, A.: ‘Assessment of coupled and independent phase designs of interleaved multiphase buck/boost DC-DC converter for EV power train’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 26932704.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0485
Loading

Related content

content/journals/10.1049/iet-pel.2017.0485
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address