access icon free Phase-reshaping strategy for enhancing grid-connected inverter robustness to grid impedance

As the grid inductor increases the phase difference between the inverter admittance and the grid admittance increases at their intersection frequency showing that the harmonic amplification coefficient is enhanced. When the phase difference exceeds 180° the admittance ratio cannot satisfy Nyquist criterion and the system becomes unstable. To address this problem a phase-reshaping strategy aiming to revise the phase of the inverter admittance in a wide frequency region without using any real-time information referring to the grid impedance or the resonant frequency is proposed. The strategy is realised by the combination of the feedforward of the voltage at the point of common coupling (PCC) and the harmonic compensators. In the feedforward, a phase lag network is employed to modify the admittance phase in a wide frequency region. The harmonic compensator in parallel to the current controller is used to offset the magnitude rise brought in by the PCC voltage feedforward. After adopting the proposed strategy, the upper limit of the phase difference is constrained at 150° and the magnitude of the inverter admittance is lower than that of the original one at low-order odd-harmonic frequency. The validity of the proposed strategy is verified by the experimental results.

Inspec keywords: Nyquist criterion; harmonics suppression; electric current control; power grids; invertors; feedforward

Other keywords: PCC voltage feedforward; inverter admittance; phase lag network; harmonic compensator; harmonic amplification coefficient; grid-connected inverter; phase-reshaping strategy; phase difference; grid impedance; inverter robustness; current controller; odd-harmonic frequency; point of common coupling; resonant frequency; intersection frequency; wide frequency region; admittance ratio; grid inductor; admittance phase; grid admittance

Subjects: Power supply quality and harmonics; DC-AC power convertors (invertors); Current control; Control of electric power systems

References

    1. 1)
      • 5. Dannehl, J., Wessels, C., Fuchs, F.W.: ‘Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 380388.
    2. 2)
      • 10. Yang, D., Ruan, X., Wu, H.: ‘Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 57955805.
    3. 3)
      • 20. Jia, Y., Zhao, J., Fu, X.: ‘Direct grid current control of LCL-filtered grid-connected inverter mitigating grid voltage disturbance’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 15321541.
    4. 4)
      • 29. Xiongfei, W., Lennart, H., Frede, B., et al: ‘A unified impedance model of voltage-source converters with phase-locked loop effect’. IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, September 2016.
    5. 5)
      • 1. Romero-Cadaval, E., Bruno, F., Mariusz, M., et al: ‘Grid-connected photovoltaic plants: an alternative energy source, replacing conventional sources’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 1832.
    6. 6)
      • 30. Buso, S., Mattavelli, P.: ‘Digital control in power electronics’ (Morgan & Claypool, Seattle, WA, 2006, pp. 1764).
    7. 7)
      • 3. Enslin, J.H.R., Heskes, P.J.M.: ‘Harmonic interaction between a large number of distributed power inverters and the distribution network’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 15861593.
    8. 8)
      • 6. Jalili, K., Bernet, S.: ‘Design of LCL filters of active-front-end two level voltage-source converters’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16741689.
    9. 9)
      • 11. Liserre, M., Theodorescu, R., Blaabjerg, F.: ‘Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values’, IEEE Trans. Power Electron., 2006, 21, (1), pp. 263272.
    10. 10)
      • 12. Agorreta, J., Borrega, M., Lopez, J., et al: ‘Modelling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 770785.
    11. 11)
      • 2. Kouro, S., Leon, J.I., Franquelo, L.G.: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    12. 12)
      • 15. Cespedes, M., Sun, J.: ‘Adaptive control of grid-connected inverters based on online grid impedance measurements’, IEEE Trans. Power Electron., 2014, 5, (2), pp. 516523.
    13. 13)
      • 7. He, J., Li, Y.W.: ‘Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 18501861.
    14. 14)
      • 8. Li, W., Ruan, X., Pan, D., et al: ‘Full-feedforward schemes of grid voltages for a three-phase LCL-type grid-connected inverter’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 22372250.
    15. 15)
      • 17. Zheng, C., Zhou, L., Yu, X., et al: ‘Online phase margin compensation strategy for a grid-tied inverter to improve its robustness to grid impedance variation’, IET Power Electron., 2016, 9, (4), pp. 611620.
    16. 16)
      • 31. Shousong, H.: ‘Automatic control theory’ (Science Press, Beijing, China, 2001, 4th edn.), pp. 201213.
    17. 17)
      • 19. Donghua, P., Xinbo, R., Chenlei, B., et al: ‘Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15371547.
    18. 18)
      • 25. Xu, J., Xie, S., Tang, T.: ‘Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid’, IET Power Electron., 2014, 7, (10), pp. 26602671.
    19. 19)
      • 16. Dae-Keun, C., Duk-Hong, K., Kyo-Beum, L.: ‘A novel gain scheduling method for distributed power generation systems with a LCL-filter by estimating grid impedance’. Proc. IEEE Int. Symp. on Industrial Electronics, Bari, Italy, 4–7 2010, pp. 34383443.
    20. 20)
      • 24. Mohamed, Y.A.-R.I.: ‘Suppression of low- and high-frequency instabilities and grid-induced disturbances in distributed generation inverters’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37903803.
    21. 21)
      • 18. Peña-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘A self-commissioning notch filter for active damping in a three-phase LCL-filter-based grid-tie converter’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 67546761.
    22. 22)
      • 23. Wang, X., Blaabjerg, F., Liserre, M., et al: ‘An active damper for stabilizing power-electronics-based AC systems’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 33183329.
    23. 23)
      • 21. Freijedo, F.D., Rodriguez-Diaz, E., Golsorkhi, M.S., et al: ‘A root-locus design methodology derived from the impedance/admittance stability formulation and its application for LCL grid-connected converters in wind turbines’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 82188228.
    24. 24)
      • 26. Harnefors, L., Alejandro, G., Yepes Vidal, A., et al: ‘Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 702710.
    25. 25)
      • 13. Minghui, L., Xiongfei, W., Frede, B., et al: ‘An analysis method for harmonic resonance and stability of multi-paralleled LCL-filtered inverters’. IEEE 6th Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, June 2015, pp. 16.
    26. 26)
      • 32. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame’, IEEE Trans. Power. Electron., 2006, 21, (3), pp. 836841.
    27. 27)
      • 33. Shen, G., Zhu, X., Zhang, J., et al: ‘A new feedback method for PR current control of LCL-filter-based grid-connected inverter’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20332041.
    28. 28)
      • 9. Céspedes, M., Sun, J.: ‘Impedance shaping of three-phase grid-parallel voltage-source converters’. Proc. IEEE Applied Power Electronics Conf. and Exposition (APEC), Orlando, FL, 5–9 February 2012, pp. 754760.
    29. 29)
      • 14. Sun, J.: ‘Impedance-based stability criterion for grid-connected inverters’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 30753078.
    30. 30)
      • 4. Lindgren, M., Svensson, J.: ‘Control of a voltage-source converter connected to the grid through an LCL-filter-application to active filtering’. Proc. IEEE Power Electronics Specialists Conf., Fukuoka, Japan, 1998, pp. 229235.
    31. 31)
      • 27. Harnefors, L., Zhang, L., Bongiorno, M.: ‘Frequency-domain passivity-based current controller design’, IET Power Electron., 2008, 1, (4), pp. 455465.
    32. 32)
      • 22. Alireza, K., Yasser Abdel-Rady, I.M.: ‘Robust single-loop direct current control of LCL-filtered converter-based DG units in grid-connected and autonomous microgrid modes’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 56055619.
    33. 33)
      • 28. Zmood, D.N., Holmes, D.G., Bode, G.: ‘Frequency domain analysis of three phase linear current regulators’, IEEE Trans. Ind. Appl., 2001, 2, (37), pp. 601610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0477
Loading

Related content

content/journals/10.1049/iet-pel.2017.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading