http://iet.metastore.ingenta.com
1887

Zero-sequence voltage injected fault tolerant scheme for multiple open circuit faults in reduced switch count-based MLDCL inverter

Zero-sequence voltage injected fault tolerant scheme for multiple open circuit faults in reduced switch count-based MLDCL inverter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Neutral shifting (NS) is a popular scheme to achieve fault tolerance operation (FTO) of multilevel inverters (MLIs) such as cascaded H-bridge (CHB). This fault tolerance scheme (FTS) can be realised with/without zero-sequence voltage injection. Among these, NS with zero-sequence injection FTS is relatively easier to implement. However, this scheme is not generalised for multiple open-circuit faults. Moreover, NS-FTS schemes are not directly applicable for fault tolerance of reduced switch count (RSC)-MLIs, as these inverters have limited redundancies. Therefore in this study, FTO for RSC-based multilevel dc-link (MLDCL) inverter using NS zero-sequence injection FTS is proposed for simultaneous failure of multiple switch faults. Generalised mathematical equations are derived to calculate the magnitude and phase angle of injected zero-sequence voltage for obtaining balanced line voltages with uniform power sharing among all healthy units. The proposed generalised NS-FTS with zero-sequence injection is implemented on three-phase 15-level MLDCL inverter for various fault conditions. The obtained simulation results are validated experimentally on nine-level MLDCL inverter.

References

    1. 1)
      • K.K. Gupta , A. Ranjan , P. Bhatnagar .
        1. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
        . IEEE Trans. Power Electron. , 1 , 135 - 151
    2. 2)
      • J.I. Leon , S. Vazquez , L.G. Franquelo .
        2. Leon, J.I., Vazquez, S., Franquelo, L.G.: ‘Multilevel converters: control and modulation techniques for their operation and industrial applications’, Proc. IEEE, 2017, 105, (11), pp. 20662081.
        . Proc. IEEE , 11 , 2066 - 2081
    3. 3)
      • R. Speed , A.K. Wallace .
        3. Speed, R., Wallace, A.K.: ‘Remedial strategies for brushless dc drive failures’, IEEE Trans. Ind. Appl., 2016, 26, (2), pp. 259266.
        . IEEE Trans. Ind. Appl. , 2 , 259 - 266
    4. 4)
      • W. Zhang , D. Xu , P.N. Enjeti .
        4. Zhang, W., Xu, D., Enjeti, P.N., et al: ‘Survey on fault-tolerant techniques for power electronic converters’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63196331.
        . IEEE Trans. Power Electron. , 12 , 6319 - 6331
    5. 5)
      • Y. Song , B. Wang .
        5. Song, Y., Wang, B.: ‘Survey on reliability of power electronic systems’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 591604.
        . IEEE Trans. Power Electron. , 1 , 591 - 604
    6. 6)
      • P. Lezana , J. Pou , T.A. Meynard .
        6. Lezana, P., Pou, J., Meynard, T.A., et al: ‘Survey on fault operation on multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22072218.
        . IEEE Trans. Ind. Electron. , 7 , 2207 - 2218
    7. 7)
      • N. Bianchi , S. Bolognani , M. Zigliotto .
        7. Bianchi, N., Bolognani, S., Zigliotto, M.: ‘Analysis of PM synchronous motor drive failures during flux weakening operation’. 27th IEEE Power Electronics Specialists Conf., 1996, vol. 2, pp. 15421548.
        . 27th IEEE Power Electronics Specialists Conf. , 1542 - 1548
    8. 8)
      • D. Kastha , B.K. Bose .
        8. Kastha, D., Bose, B.K.: ‘Investigation of fault modes of voltage-fed inverter system for induction motor drive’, IEEE Trans. Ind. Appl., 1994, 30, (4), pp. 10281038.
        . IEEE Trans. Ind. Appl. , 4 , 1028 - 1038
    9. 9)
      • H.W. Sim , J.S. Lee , K.B. Lee .
        9. Sim, H.W., Lee, J.S., Lee, K.B.: ‘Detecting open-switch faults: using asymmetric zero-voltage switching states’, IEEE Ind. Appl. Mag., 2016, 22, (2), pp. 2737.
        . IEEE Ind. Appl. Mag. , 2 , 27 - 37
    10. 10)
      • C. Kral , K. Kafka .
        10. Kral, C., Kafka, K.: ‘Power electronics monitoring for a controlled voltage source inverter drive with induction machines’. 31st Annual IEEE Power Electronics Specialists Conf., 2000, vol. 1, pp. 213217.
        . 31st Annual IEEE Power Electronics Specialists Conf. , 213 - 217
    11. 11)
      • B. Lu , S.K. Sharma .
        11. Lu, B., Sharma, S.K.: ‘A literature review of IGBT fault diagnostic and protection methods for power inverters’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 17701777.
        . IEEE Trans. Ind. Appl. , 5 , 1770 - 1777
    12. 12)
      • B.A. Welchko , T.A. Lipo , T.M. Jahns .
        12. Welchko, B.A., Lipo, T.A., Jahns, T.M., et al: ‘Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 11081116.
        . IEEE Trans. Power Electron. , 4 , 1108 - 1116
    13. 13)
      • R. Peuget , S. Courtine , J.-P. Rognon .
        13. Peuget, R., Courtine, S., Rognon, J.-P.: ‘Fault detection and isolation on a PWM inverter by knowledge-based model’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 13181326.
        . IEEE Trans. Ind. Appl. , 6 , 1318 - 1326
    14. 14)
      • M. Ma , L. Hu , A. Chen .
        14. Ma, M., Hu, L., Chen, A., et al: ‘Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20502060.
        . IEEE Trans. Power Electron. , 5 , 2050 - 2060
    15. 15)
      • U.M. Choi , F. Blaabjerg , K.B. Lee .
        15. Choi, U.M., Blaabjerg, F., Lee, K.B.: ‘Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 26602673.
        . IEEE Trans. Power Electron. , 5 , 2660 - 2673
    16. 16)
      • D. Eaton , J. Rama , P. Hammond .
        16. Eaton, D., Rama, J., Hammond, P.: ‘Neutral shift [five years of continuous operation with adjustable frequency drives]’, IEEE Ind. Appl. Mag., 2003, 9, (6), pp. 4049.
        . IEEE Ind. Appl. Mag. , 6 , 40 - 49
    17. 17)
      • P. Lezana , G. Ortiz .
        17. Lezana, P., Ortiz, G.: ‘Extended operation of cascade multicell converters under fault condition’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 26972703.
        . IEEE Trans. Ind. Electron. , 7 , 2697 - 2703
    18. 18)
      • L. Maharjan , T. Yamagishi , H. Akagi .
        18. Maharjan, L., Yamagishi, T., Akagi, H., et al: ‘Fault-tolerant operation of a battery energy storage system based on a multilevel cascade PWM converter with star configuration’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 23862396.
        . IEEE Trans. Power Electron. , 9 , 2386 - 2396
    19. 19)
      • M. Aleenejad , H. Mahmoudi , P. Moamaei .
        19. Aleenejad, M., Mahmoudi, H., Moamaei, P., et al: ‘A new fault-tolerant strategy based on a modified selective harmonic technique for three-phase multilevel converters with a single faulty cell’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 31413150.
        . IEEE Trans. Power Electron. , 4 , 3141 - 3150
    20. 20)
      • M. Aleenejad , H. Mahmoudi , R. Ahmadi .
        20. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: ‘Unbalanced space vector modulation with fundamental phase shift compensation for faulty multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 72247233.
        . IEEE Trans. Power Electron. , 10 , 7224 - 7233
    21. 21)
      • M. Aleenejad , H. Mahmoudi , R. Ahmadi .
        21. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: ‘Multifault tolerance strategy for three-phase multilevel converters based on a half-wave symmetrical selective harmonic elimination technique’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 79807989.
        . IEEE Trans. Power Electron. , 10 , 7980 - 7989
    22. 22)
      • S.M. Kim , J.S. Lee , K.B. Lee .
        22. Kim, S.M., Lee, J.S., Lee, K.B.: ‘A modified level-shifted PWM strategy for fault-tolerant cascaded multilevel inverters with improved power distribution’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 72647274.
        . IEEE Trans. Ind. Electron. , 11 , 7264 - 7274
    23. 23)
      • G.-J. Su .
        23. Su, G.-J.: ‘Multilevel DC-link inverter’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 848854.
        . IEEE Trans. Ind. Appl. , 3 , 848 - 854
    24. 24)
      • D. Sreenivasarao , P. Agarwal , B. Das .
        24. Sreenivasarao, D., Agarwal, P., Das, B.: ‘Performance evaluation of carrier rotation strategy in level-shifted pulse-width modulation technique’, IET Power Electron., 2014, 7, (3), pp. 667680.
        . IET Power Electron. , 3 , 667 - 680
    25. 25)
      • Hari Priya V. Sreenivasarao , D. Siva Kumar .
        25. Priya V. Sreenivasarao, Hari, D., Siva Kumar, G.: ‘Improved pulse-width modulation scheme for T-type multilevel inverter’, IET Power Electron., 2017, 10, (8), pp. 968976.
        . IET Power Electron. , 8 , 968 - 976
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0472
Loading

Related content

content/journals/10.1049/iet-pel.2017.0472
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address