Zero-sequence voltage injected fault tolerant scheme for multiple open circuit faults in reduced switch count-based MLDCL inverter

Zero-sequence voltage injected fault tolerant scheme for multiple open circuit faults in reduced switch count-based MLDCL inverter

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Neutral shifting (NS) is a popular scheme to achieve fault tolerance operation (FTO) of multilevel inverters (MLIs) such as cascaded H-bridge (CHB). This fault tolerance scheme (FTS) can be realised with/without zero-sequence voltage injection. Among these, NS with zero-sequence injection FTS is relatively easier to implement. However, this scheme is not generalised for multiple open-circuit faults. Moreover, NS-FTS schemes are not directly applicable for fault tolerance of reduced switch count (RSC)-MLIs, as these inverters have limited redundancies. Therefore in this study, FTO for RSC-based multilevel dc-link (MLDCL) inverter using NS zero-sequence injection FTS is proposed for simultaneous failure of multiple switch faults. Generalised mathematical equations are derived to calculate the magnitude and phase angle of injected zero-sequence voltage for obtaining balanced line voltages with uniform power sharing among all healthy units. The proposed generalised NS-FTS with zero-sequence injection is implemented on three-phase 15-level MLDCL inverter for various fault conditions. The obtained simulation results are validated experimentally on nine-level MLDCL inverter.


    1. 1)
      • 1. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
    2. 2)
      • 2. Leon, J.I., Vazquez, S., Franquelo, L.G.: ‘Multilevel converters: control and modulation techniques for their operation and industrial applications’, Proc. IEEE, 2017, 105, (11), pp. 20662081.
    3. 3)
      • 3. Speed, R., Wallace, A.K.: ‘Remedial strategies for brushless dc drive failures’, IEEE Trans. Ind. Appl., 2016, 26, (2), pp. 259266.
    4. 4)
      • 4. Zhang, W., Xu, D., Enjeti, P.N., et al: ‘Survey on fault-tolerant techniques for power electronic converters’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63196331.
    5. 5)
      • 5. Song, Y., Wang, B.: ‘Survey on reliability of power electronic systems’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 591604.
    6. 6)
      • 6. Lezana, P., Pou, J., Meynard, T.A., et al: ‘Survey on fault operation on multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22072218.
    7. 7)
      • 7. Bianchi, N., Bolognani, S., Zigliotto, M.: ‘Analysis of PM synchronous motor drive failures during flux weakening operation’. 27th IEEE Power Electronics Specialists Conf., 1996, vol. 2, pp. 15421548.
    8. 8)
      • 8. Kastha, D., Bose, B.K.: ‘Investigation of fault modes of voltage-fed inverter system for induction motor drive’, IEEE Trans. Ind. Appl., 1994, 30, (4), pp. 10281038.
    9. 9)
      • 9. Sim, H.W., Lee, J.S., Lee, K.B.: ‘Detecting open-switch faults: using asymmetric zero-voltage switching states’, IEEE Ind. Appl. Mag., 2016, 22, (2), pp. 2737.
    10. 10)
      • 10. Kral, C., Kafka, K.: ‘Power electronics monitoring for a controlled voltage source inverter drive with induction machines’. 31st Annual IEEE Power Electronics Specialists Conf., 2000, vol. 1, pp. 213217.
    11. 11)
      • 11. Lu, B., Sharma, S.K.: ‘A literature review of IGBT fault diagnostic and protection methods for power inverters’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 17701777.
    12. 12)
      • 12. Welchko, B.A., Lipo, T.A., Jahns, T.M., et al: ‘Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 11081116.
    13. 13)
      • 13. Peuget, R., Courtine, S., Rognon, J.-P.: ‘Fault detection and isolation on a PWM inverter by knowledge-based model’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 13181326.
    14. 14)
      • 14. Ma, M., Hu, L., Chen, A., et al: ‘Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20502060.
    15. 15)
      • 15. Choi, U.M., Blaabjerg, F., Lee, K.B.: ‘Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 26602673.
    16. 16)
      • 16. Eaton, D., Rama, J., Hammond, P.: ‘Neutral shift [five years of continuous operation with adjustable frequency drives]’, IEEE Ind. Appl. Mag., 2003, 9, (6), pp. 4049.
    17. 17)
      • 17. Lezana, P., Ortiz, G.: ‘Extended operation of cascade multicell converters under fault condition’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 26972703.
    18. 18)
      • 18. Maharjan, L., Yamagishi, T., Akagi, H., et al: ‘Fault-tolerant operation of a battery energy storage system based on a multilevel cascade PWM converter with star configuration’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 23862396.
    19. 19)
      • 19. Aleenejad, M., Mahmoudi, H., Moamaei, P., et al: ‘A new fault-tolerant strategy based on a modified selective harmonic technique for three-phase multilevel converters with a single faulty cell’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 31413150.
    20. 20)
      • 20. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: ‘Unbalanced space vector modulation with fundamental phase shift compensation for faulty multilevel converters’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 72247233.
    21. 21)
      • 21. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: ‘Multifault tolerance strategy for three-phase multilevel converters based on a half-wave symmetrical selective harmonic elimination technique’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 79807989.
    22. 22)
      • 22. Kim, S.M., Lee, J.S., Lee, K.B.: ‘A modified level-shifted PWM strategy for fault-tolerant cascaded multilevel inverters with improved power distribution’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 72647274.
    23. 23)
      • 23. Su, G.-J.: ‘Multilevel DC-link inverter’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 848854.
    24. 24)
      • 24. Sreenivasarao, D., Agarwal, P., Das, B.: ‘Performance evaluation of carrier rotation strategy in level-shifted pulse-width modulation technique’, IET Power Electron., 2014, 7, (3), pp. 667680.
    25. 25)
      • 25. Priya V. Sreenivasarao, Hari, D., Siva Kumar, G.: ‘Improved pulse-width modulation scheme for T-type multilevel inverter’, IET Power Electron., 2017, 10, (8), pp. 968976.

Related content

This is a required field
Please enter a valid email address