Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis and experimental verification of a multi-input converter for DC microgrid applications

This work presents a multi-input converter (MIC) that can build a DC microgrid having renewable energy resources, balanced sources, and energy storage devices. After analysing its operation modes, a design procedure for the converter considering three different cases is provided. This procedure includes the semiconductor elements selection and design of the inductors. After this step, a detailed efficiency analysis is carried out for the studied cases. Finally, a 1 kW prototype creating a photovoltaic–battery system is built. Through several experiments based on this set-up, it is shown that the theoretical analysis is accurate and the studied MIC can be successfully utilised to create DC microgrid.

References

    1. 1)
      • 15. Qian, Z., Abdel.Rahman, O., Al.Atrash, H., et al: ‘Modeling and control of three-port dc/dc converter interface for satellite applications’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 637649.
    2. 2)
      • 2. Augustine, S., Lakshminarasamma, N., Mishra, M.K.: ‘Control of photovoltaic-based low-voltage dc microgrid system for power sharing with modified droop algorithm’, IET Power Electron., 2016, 9, (6), pp. 11321143.
    3. 3)
      • 5. Ji, F., Xiang, J., Li, W., et al: ‘A feedback passivation design for dc microgrid and its dc/dc converters’, Energies, 2016, 10, (1), p. 14.
    4. 4)
      • 29. Dusmez, S., Hasanzadeh, A., Khaligh, A.: ‘Comparative analysis of bidirectional three-level dc–dc converter for automotive applications’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 33053315.
    5. 5)
      • 24. Kim, T., Kwak, S.: ‘Single pole switch leg based multi-port converter with an energy storage’, IET Power Electron., 2016, 9, (6), pp. 13221330.
    6. 6)
      • 6. Sannino, A., Postiglione, G., Bollen, M.H.: ‘Feasibility of a dc network for commercial facilities’. Conf. Record of the Industry Applications Conf., 2002. 37th IAS Annual Meeting., 2002, vol. 3, pp. 17101717.
    7. 7)
      • 16. Zhang, Z., Thomsen, O.C., Andersen, M.A., et al: ‘Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers’, IET Power Electron., 2012, 5, (7), pp. 10741083.
    8. 8)
      • 7. Baran, M.E., Mahajan, N.R.: ‘Dc distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    9. 9)
      • 11. Khanh, L.N., Seo, J.J., Kim, Y.S., et al: ‘Power-management strategies for a grid-connected pv-fc hybrid system’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 18741882.
    10. 10)
      • 4. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled ac and dc microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    11. 11)
      • 27. Sannino, A., Postiglione, G., Bollen, M.H.: ‘Feasibility of a dc network for commercial facilities’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14991507.
    12. 12)
      • 14. Garg, M., Singh, R.K., Mahanty, R.: ‘Magnetically coupled boost converter with enhanced equivalent series resistance filter capacitor for dc microgrid’, IET Power Electron., 2016, 9, (9), pp. 19431951.
    13. 13)
      • 22. Babaei, E., Abbasi, O.: ‘Structure for multi-input multi-output dc–dc boost converter’, IET Power Electron., 2016, 9, (1), pp. 919.
    14. 14)
      • 12. Rehman, Z., Al.Bahadly, I., Mukhopadhyay, S.: ‘Multiinput dc–dc converters in renewable energy applications–an overview’, Renew. Sust. Energy Rev., 2015, 41, pp. 521539.
    15. 15)
      • 10. Thounthong, P., Chunkag, V., Sethakul, P., et al: ‘Energy management of fuel cell/solar cell/supercapacitor hybrid power source’, J. Power Sources, 2011, 196, (1), pp. 313324.
    16. 16)
      • 32. Wojda, R., Kazimierczuk, M.: ‘Winding resistance of litz-wire and multi-strand inductors’, IET Power Electron., 2012, 5, (2), pp. 257268.
    17. 17)
      • 8. Ding, G., Gao, F., Zhang, S., et al: ‘Control of hybrid ac/dc microgrid under islanding operational conditions’, J. Modern Power Syst. Clean Energy, 2014, 3, (2), pp. 223232.
    18. 18)
      • 21. Banaei, M.R., Ardi, H., Alizadeh, R., et al: ‘Non-isolated multi-input–single-output dc/dc converter for photovoltaic power generation systems’, IET Power Electron., 2014, 7, (11), pp. 28062816.
    19. 19)
      • 9. Arul, P., Ramachandaramurthy, V.K., Rajkumar, R.: ‘Control strategies for a hybrid renewable energy system: a review’, Renew. Sust. Energy Rev., 2015, 42, pp. 597608.
    20. 20)
      • 18. Kwasinski, A., Krein, P.T.: ‘Multiple-input dc-dc converters to enhance local availability in grids using distributed generation resources’. Applied Power Electronics Conf., APEC 2007-Twenty Second Annual IEEE, 2007, pp. 16571663.
    21. 21)
      • 1. Jing, W., Lai, C.H., Wong, S.H.W., et al: ‘Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: a review’, IET Renew. Power Gener., 2017, 11, (4), pp. 461469.
    22. 22)
      • 28. Powder core catalog’ (Magnetic Inc., 2015), Available: www. mag-inc.com.
    23. 23)
      • 31. Graovac, D., Purschel, M., Kiep, A.: ‘Mosfet power losses calculation using the data-sheet parameters’, Infineon Application Note, 2006, 1.
    24. 24)
      • 20. Yuan-mao, Y., Cheng, K.W.E.: ‘Multi-input voltage-summation converter based on switched-capacitor’, IET Power Electron., 2013, 6, (9), pp. 19091916.
    25. 25)
      • 26. Tavlasoglu, Y., Akar, F., Vural, B.: ‘Pv/battery hybrid energy system via a double input dc/dc converter for dynamic loads’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), 2014, pp. 631636.
    26. 26)
      • 23. Behjati, H., Davoudi, A.: ‘Single-stage multi-port dc–dc converter topology’, IET Power Electron., 2013, 6, (2), pp. 392403.
    27. 27)
      • 3. Yang, N., Gao, F., Paire, D., et al: ‘Distributed control of multitime scale dc microgrid based on adrc’, IET Power Electron., 2017, 10, (3), pp. 329337.
    28. 28)
      • 17. Gunasekaran, D., Umanand, L.: ‘Integrated magnetics based multi-port bidirectional dc-dc converter topology for discontinuous-mode operation’, IET Power Electron., 2012, 5, (7), pp. 935944.
    29. 29)
      • 30. Venkatachalam, K., Sullivan, C.R., Abdallah, T., et al: ‘Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters’. 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proc.., 2002, pp. 3641.
    30. 30)
      • 33. Erdinc, O., Elma, O., Uzunoglu, M., et al: ‘Experimental performance assessment of an online energy management strategy for varying renewable power production suppression’, Int. J. Hydrog. Energy, 2012, 37, (6), pp. 47374748.
    31. 31)
      • 25. Vural, B.: ‘Fc/uc hybridization for dynamic loads with a novel double input dc–dc converter topology’, Int. J. Hydrog. Energy, 2013, 38, (2), pp. 11031110.
    32. 32)
      • 19. Zhao, R., Kwasinski, A.: ‘Multiple-input single ended primary inductor converter (SEPIC) converter for distributed generation applications’. Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE, 2009, pp. 18471854.
    33. 33)
      • 13. Lai, C.M., Pan, C.T., Cheng, M.C.: ‘High-efficiency modular high step-up interleaved boost converter for dc-microgrid applications’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 161171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0456
Loading

Related content

content/journals/10.1049/iet-pel.2017.0456
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address