http://iet.metastore.ingenta.com
1887

Analysis and experimental verification of a multi-input converter for DC microgrid applications

Analysis and experimental verification of a multi-input converter for DC microgrid applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work presents a multi-input converter (MIC) that can build a DC microgrid having renewable energy resources, balanced sources, and energy storage devices. After analysing its operation modes, a design procedure for the converter considering three different cases is provided. This procedure includes the semiconductor elements selection and design of the inductors. After this step, a detailed efficiency analysis is carried out for the studied cases. Finally, a 1 kW prototype creating a photovoltaic–battery system is built. Through several experiments based on this set-up, it is shown that the theoretical analysis is accurate and the studied MIC can be successfully utilised to create DC microgrid.

References

    1. 1)
      • 1. Jing, W., Lai, C.H., Wong, S.H.W., et al: ‘Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: a review’, IET Renew. Power Gener., 2017, 11, (4), pp. 461469.
    2. 2)
      • 2. Augustine, S., Lakshminarasamma, N., Mishra, M.K.: ‘Control of photovoltaic-based low-voltage dc microgrid system for power sharing with modified droop algorithm’, IET Power Electron., 2016, 9, (6), pp. 11321143.
    3. 3)
      • 3. Yang, N., Gao, F., Paire, D., et al: ‘Distributed control of multitime scale dc microgrid based on adrc’, IET Power Electron., 2017, 10, (3), pp. 329337.
    4. 4)
      • 4. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled ac and dc microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    5. 5)
      • 5. Ji, F., Xiang, J., Li, W., et al: ‘A feedback passivation design for dc microgrid and its dc/dc converters’, Energies, 2016, 10, (1), p. 14.
    6. 6)
      • 6. Sannino, A., Postiglione, G., Bollen, M.H.: ‘Feasibility of a dc network for commercial facilities’. Conf. Record of the Industry Applications Conf., 2002. 37th IAS Annual Meeting., 2002, vol. 3, pp. 17101717.
    7. 7)
      • 7. Baran, M.E., Mahajan, N.R.: ‘Dc distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    8. 8)
      • 8. Ding, G., Gao, F., Zhang, S., et al: ‘Control of hybrid ac/dc microgrid under islanding operational conditions’, J. Modern Power Syst. Clean Energy, 2014, 3, (2), pp. 223232.
    9. 9)
      • 9. Arul, P., Ramachandaramurthy, V.K., Rajkumar, R.: ‘Control strategies for a hybrid renewable energy system: a review’, Renew. Sust. Energy Rev., 2015, 42, pp. 597608.
    10. 10)
      • 10. Thounthong, P., Chunkag, V., Sethakul, P., et al: ‘Energy management of fuel cell/solar cell/supercapacitor hybrid power source’, J. Power Sources, 2011, 196, (1), pp. 313324.
    11. 11)
      • 11. Khanh, L.N., Seo, J.J., Kim, Y.S., et al: ‘Power-management strategies for a grid-connected pv-fc hybrid system’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 18741882.
    12. 12)
      • 12. Rehman, Z., Al.Bahadly, I., Mukhopadhyay, S.: ‘Multiinput dc–dc converters in renewable energy applications–an overview’, Renew. Sust. Energy Rev., 2015, 41, pp. 521539.
    13. 13)
      • 13. Lai, C.M., Pan, C.T., Cheng, M.C.: ‘High-efficiency modular high step-up interleaved boost converter for dc-microgrid applications’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 161171.
    14. 14)
      • 14. Garg, M., Singh, R.K., Mahanty, R.: ‘Magnetically coupled boost converter with enhanced equivalent series resistance filter capacitor for dc microgrid’, IET Power Electron., 2016, 9, (9), pp. 19431951.
    15. 15)
      • 15. Qian, Z., Abdel.Rahman, O., Al.Atrash, H., et al: ‘Modeling and control of three-port dc/dc converter interface for satellite applications’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 637649.
    16. 16)
      • 16. Zhang, Z., Thomsen, O.C., Andersen, M.A., et al: ‘Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers’, IET Power Electron., 2012, 5, (7), pp. 10741083.
    17. 17)
      • 17. Gunasekaran, D., Umanand, L.: ‘Integrated magnetics based multi-port bidirectional dc-dc converter topology for discontinuous-mode operation’, IET Power Electron., 2012, 5, (7), pp. 935944.
    18. 18)
      • 18. Kwasinski, A., Krein, P.T.: ‘Multiple-input dc-dc converters to enhance local availability in grids using distributed generation resources’. Applied Power Electronics Conf., APEC 2007-Twenty Second Annual IEEE, 2007, pp. 16571663.
    19. 19)
      • 19. Zhao, R., Kwasinski, A.: ‘Multiple-input single ended primary inductor converter (SEPIC) converter for distributed generation applications’. Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE, 2009, pp. 18471854.
    20. 20)
      • 20. Yuan-mao, Y., Cheng, K.W.E.: ‘Multi-input voltage-summation converter based on switched-capacitor’, IET Power Electron., 2013, 6, (9), pp. 19091916.
    21. 21)
      • 21. Banaei, M.R., Ardi, H., Alizadeh, R., et al: ‘Non-isolated multi-input–single-output dc/dc converter for photovoltaic power generation systems’, IET Power Electron., 2014, 7, (11), pp. 28062816.
    22. 22)
      • 22. Babaei, E., Abbasi, O.: ‘Structure for multi-input multi-output dc–dc boost converter’, IET Power Electron., 2016, 9, (1), pp. 919.
    23. 23)
      • 23. Behjati, H., Davoudi, A.: ‘Single-stage multi-port dc–dc converter topology’, IET Power Electron., 2013, 6, (2), pp. 392403.
    24. 24)
      • 24. Kim, T., Kwak, S.: ‘Single pole switch leg based multi-port converter with an energy storage’, IET Power Electron., 2016, 9, (6), pp. 13221330.
    25. 25)
      • 25. Vural, B.: ‘Fc/uc hybridization for dynamic loads with a novel double input dc–dc converter topology’, Int. J. Hydrog. Energy, 2013, 38, (2), pp. 11031110.
    26. 26)
      • 26. Tavlasoglu, Y., Akar, F., Vural, B.: ‘Pv/battery hybrid energy system via a double input dc/dc converter for dynamic loads’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), 2014, pp. 631636.
    27. 27)
      • 27. Sannino, A., Postiglione, G., Bollen, M.H.: ‘Feasibility of a dc network for commercial facilities’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14991507.
    28. 28)
      • 28. Powder core catalog’ (Magnetic Inc., 2015), Available: www. mag-inc.com.
    29. 29)
      • 29. Dusmez, S., Hasanzadeh, A., Khaligh, A.: ‘Comparative analysis of bidirectional three-level dc–dc converter for automotive applications’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 33053315.
    30. 30)
      • 30. Venkatachalam, K., Sullivan, C.R., Abdallah, T., et al: ‘Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters’. 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proc.., 2002, pp. 3641.
    31. 31)
      • 31. Graovac, D., Purschel, M., Kiep, A.: ‘Mosfet power losses calculation using the data-sheet parameters’, Infineon Application Note, 2006, 1.
    32. 32)
      • 32. Wojda, R., Kazimierczuk, M.: ‘Winding resistance of litz-wire and multi-strand inductors’, IET Power Electron., 2012, 5, (2), pp. 257268.
    33. 33)
      • 33. Erdinc, O., Elma, O., Uzunoglu, M., et al: ‘Experimental performance assessment of an online energy management strategy for varying renewable power production suppression’, Int. J. Hydrog. Energy, 2012, 37, (6), pp. 47374748.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0456
Loading

Related content

content/journals/10.1049/iet-pel.2017.0456
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address